Support Set Invariancy for Interval Bimatrix Games
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F19%3A10401027" target="_blank" >RIV/00216208:11320/19:10401027 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=J4fj4ROgb_" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=J4fj4ROgb_</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1142/S0218488519500107" target="_blank" >10.1142/S0218488519500107</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Support Set Invariancy for Interval Bimatrix Games
Popis výsledku v původním jazyce
Traditionally, game theory problems were considered for exact data, and the decisions were based on known payoffs. However, this assumption is rarely true in practice. Uncertainty in measurements and imprecise information must be taken into account. The interval-based approach for handling such uncertainties assumes that one has lower and upper bounds on payoffs. In this paper, interval bimatrix games are studied. Especially, we focus on three kinds of support set invariancy. Support of a mixed strategy consists of that pure strategies having positive probabilities. Given an interval-valued bimatrix game and supports for both players, the question states as follows: Does every bimatrix game instance have an equilibrium with the prescribed support? The other two kinds of invariancies are slight modifications: Has every bimatrix game instance an equilibrium being a subset/superset of the prescribed support? It is computationally difficult to answer these questions: the first case costs solving a large number of linear programs or mixed integer programs. For the remaining two cases a sufficient condition and a necessary condition are proposed, respectively.
Název v anglickém jazyce
Support Set Invariancy for Interval Bimatrix Games
Popis výsledku anglicky
Traditionally, game theory problems were considered for exact data, and the decisions were based on known payoffs. However, this assumption is rarely true in practice. Uncertainty in measurements and imprecise information must be taken into account. The interval-based approach for handling such uncertainties assumes that one has lower and upper bounds on payoffs. In this paper, interval bimatrix games are studied. Especially, we focus on three kinds of support set invariancy. Support of a mixed strategy consists of that pure strategies having positive probabilities. Given an interval-valued bimatrix game and supports for both players, the question states as follows: Does every bimatrix game instance have an equilibrium with the prescribed support? The other two kinds of invariancies are slight modifications: Has every bimatrix game instance an equilibrium being a subset/superset of the prescribed support? It is computationally difficult to answer these questions: the first case costs solving a large number of linear programs or mixed integer programs. For the remaining two cases a sufficient condition and a necessary condition are proposed, respectively.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
50201 - Economic Theory
Návaznosti výsledku
Projekt
<a href="/cs/project/GA18-04735S" target="_blank" >GA18-04735S: Nové přístupy pro relaxační a aproximační techniky v deterministické globální optimalizaci</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
International Journal of Uncertainty, Fuzziness and Knowlege-Based Systems
ISSN
0218-4885
e-ISSN
—
Svazek periodika
27
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
SG - Singapurská republika
Počet stran výsledku
13
Strana od-do
225-237
Kód UT WoS článku
000463236100003
EID výsledku v databázi Scopus
2-s2.0-85063967131