Ehrenfest regularization of Hamiltonian systems
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F19%3A10401410" target="_blank" >RIV/00216208:11320/19:10401410 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68407700:21340/19:00333728
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=Wkyj7bX60f" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=Wkyj7bX60f</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.physd.2019.06.006" target="_blank" >10.1016/j.physd.2019.06.006</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Ehrenfest regularization of Hamiltonian systems
Popis výsledku v původním jazyce
Imagine a freely rotating rigid body. The body has three principal axes of rotation. It follows from mathematical analysis of the evolution equations that pure rotations around the major and minor axes are stable while rotation around the middle axis is unstable. However, only rotation around the major axis (with highest moment of inertia) is stable in physical reality (as demonstrated by the unexpected change of rotation of the Explorer 1 probe). We propose a general method of Ehrenfest regularization of Hamiltonian equations by which the reversible Hamiltonian equations are equipped with irreversible terms constructed from the Hamiltonian dynamics itself. The method is demonstrated on harmonic oscillator, rigid body motion (solving the problem of stable minor axis rotation), ideal fluid mechanics and kinetic theory. In particular, the regularization can be seen as a birth of irreversibility and dissipation. In addition, we discuss and propose discretizations of the Ehrenfest regularized evolution equations such that key model characteristics (behavior of energy and entropy) are valid in the numerical scheme as well. (C) 2019 Elsevier B.V. All rights reserved.
Název v anglickém jazyce
Ehrenfest regularization of Hamiltonian systems
Popis výsledku anglicky
Imagine a freely rotating rigid body. The body has three principal axes of rotation. It follows from mathematical analysis of the evolution equations that pure rotations around the major and minor axes are stable while rotation around the middle axis is unstable. However, only rotation around the major axis (with highest moment of inertia) is stable in physical reality (as demonstrated by the unexpected change of rotation of the Explorer 1 probe). We propose a general method of Ehrenfest regularization of Hamiltonian equations by which the reversible Hamiltonian equations are equipped with irreversible terms constructed from the Hamiltonian dynamics itself. The method is demonstrated on harmonic oscillator, rigid body motion (solving the problem of stable minor axis rotation), ideal fluid mechanics and kinetic theory. In particular, the regularization can be seen as a birth of irreversibility and dissipation. In addition, we discuss and propose discretizations of the Ehrenfest regularized evolution equations such that key model characteristics (behavior of energy and entropy) are valid in the numerical scheme as well. (C) 2019 Elsevier B.V. All rights reserved.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10300 - Physical sciences
Návaznosti výsledku
Projekt
<a href="/cs/project/GJ17-15498Y" target="_blank" >GJ17-15498Y: Víceškálová nerovnovážná termodynamika</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Physica D: Nonlinear Phenomena
ISSN
0167-2789
e-ISSN
—
Svazek periodika
399
Číslo periodika v rámci svazku
December
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
18
Strana od-do
193-210
Kód UT WoS článku
000482872900015
EID výsledku v databázi Scopus
2-s2.0-85067649688