Linear Stochastic Differential Equations Driven by Gauss-Volterra Processes and Related Linear-Quadratic Control Problems
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F19%3A10402880" target="_blank" >RIV/00216208:11320/19:10402880 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=dQJcMCSDNI" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=dQJcMCSDNI</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00245-017-9468-3" target="_blank" >10.1007/s00245-017-9468-3</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Linear Stochastic Differential Equations Driven by Gauss-Volterra Processes and Related Linear-Quadratic Control Problems
Popis výsledku v původním jazyce
A stochastic linear-quadratic control problem is formulated and solved for some stochastic equations in an infinite dimensional Hilbert space for both finite and infinite time horizons. The equations are bilinear in the state and the noise process where the noise is a scalar Gauss-Volterra process. TheGauss-Volterra noise processes are obtained from the integral of a Brownian motion with a suitable kernel function. These noise processes include fractional Brownian motions with the Hurst parameter H is an element of (1/2, 1), Liouville fractional Brownian motions with H is an element of (1/2, 1), and some multifractional Brownian motions. The family of admissible controls for the quadratic costs is a family of linear feedback controls. This restriction on the family of controls allows for a feasible implementation of the optimal controls. The bilinear equations have drift terms that are linear evolution operators. These equations can model stochastic partial differential equations of parabolic and hyperbolic types and two families of examples are given.
Název v anglickém jazyce
Linear Stochastic Differential Equations Driven by Gauss-Volterra Processes and Related Linear-Quadratic Control Problems
Popis výsledku anglicky
A stochastic linear-quadratic control problem is formulated and solved for some stochastic equations in an infinite dimensional Hilbert space for both finite and infinite time horizons. The equations are bilinear in the state and the noise process where the noise is a scalar Gauss-Volterra process. TheGauss-Volterra noise processes are obtained from the integral of a Brownian motion with a suitable kernel function. These noise processes include fractional Brownian motions with the Hurst parameter H is an element of (1/2, 1), Liouville fractional Brownian motions with H is an element of (1/2, 1), and some multifractional Brownian motions. The family of admissible controls for the quadratic costs is a family of linear feedback controls. This restriction on the family of controls allows for a feasible implementation of the optimal controls. The bilinear equations have drift terms that are linear evolution operators. These equations can model stochastic partial differential equations of parabolic and hyperbolic types and two families of examples are given.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10103 - Statistics and probability
Návaznosti výsledku
Projekt
<a href="/cs/project/GA15-08819S" target="_blank" >GA15-08819S: Stochastické procesy v nekonečně rozměrných prostorech</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Applied Mathematics and Optimization
ISSN
0095-4616
e-ISSN
—
Svazek periodika
80
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
21
Strana od-do
369-389
Kód UT WoS článku
000487033500003
EID výsledku v databázi Scopus
2-s2.0-85038853620