Parameterized resiliency problems
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F19%3A10403786" target="_blank" >RIV/00216208:11320/19:10403786 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=PC3pC-gMzh" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=PC3pC-gMzh</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.tcs.2019.08.002" target="_blank" >10.1016/j.tcs.2019.08.002</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Parameterized resiliency problems
Popis výsledku v původním jazyce
We introduce an extension of decision problems called resiliency problems. In a resiliency problem, the goal is to decide whether an instance remains positive after any (appropriately defined) perturbation has been applied to it. To tackle these kinds of problems, some of which might be of practical interest, we introduce a notion of resiliency for Integer Linear Programs (ILP) and show how to use a result of Eisenbrand and Shmonin (Math. Oper. Res., 2008) on Parametric Linear Programming to prove that ILP RESILIENCY is fixed-parameter tractable (FPT) under a certain parameterization. To demonstrate the utility of our result, we consider natural resiliency variants of several concrete problems, and prove that they are FPT under natural parameterizations. Our first results concern a four-variate problem which generalizes the DISJOINT SET COVER problem and which is of interest in access control. We obtain a complete parameterized complexity classification for every possible combination of the parameters. Then, we introduce and study a resiliency variant of the CLOSEST STRING problem, for which we extend an FPT result of Gramm et al. (Algorithmica, 2003). We also consider problems in the fields of scheduling and social choice. We believe that many other problems can be tackled by our framework. (C) 2019 Elsevier B.V. All rights reserved.
Název v anglickém jazyce
Parameterized resiliency problems
Popis výsledku anglicky
We introduce an extension of decision problems called resiliency problems. In a resiliency problem, the goal is to decide whether an instance remains positive after any (appropriately defined) perturbation has been applied to it. To tackle these kinds of problems, some of which might be of practical interest, we introduce a notion of resiliency for Integer Linear Programs (ILP) and show how to use a result of Eisenbrand and Shmonin (Math. Oper. Res., 2008) on Parametric Linear Programming to prove that ILP RESILIENCY is fixed-parameter tractable (FPT) under a certain parameterization. To demonstrate the utility of our result, we consider natural resiliency variants of several concrete problems, and prove that they are FPT under natural parameterizations. Our first results concern a four-variate problem which generalizes the DISJOINT SET COVER problem and which is of interest in access control. We obtain a complete parameterized complexity classification for every possible combination of the parameters. Then, we introduce and study a resiliency variant of the CLOSEST STRING problem, for which we extend an FPT result of Gramm et al. (Algorithmica, 2003). We also consider problems in the fields of scheduling and social choice. We believe that many other problems can be tackled by our framework. (C) 2019 Elsevier B.V. All rights reserved.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA17-09142S" target="_blank" >GA17-09142S: Moderní algoritmy: Nové výzvy komplexních dat</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Theoretical Computer Science
ISSN
0304-3975
e-ISSN
—
Svazek periodika
2019
Číslo periodika v rámci svazku
795
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
14
Strana od-do
478-491
Kód UT WoS článku
000494887800037
EID výsledku v databázi Scopus
2-s2.0-85070724206