Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

The Development of Vacancies during Severe Plastic Deformation

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F19%3A10404023" target="_blank" >RIV/00216208:11320/19:10404023 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=x5iOBl16P7" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=x5iOBl16P7</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.2320/matertrans.MF201937" target="_blank" >10.2320/matertrans.MF201937</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    The Development of Vacancies during Severe Plastic Deformation

  • Popis výsledku v původním jazyce

    A high density of lattice defects is introduced to materials by severe plastic deformation (SPD). Numerous experimental techniques, in particular electron microscopy, X-ray, electron and neutron diffraction, etc. are employed to characterize the evolution of microstructure and defects with strain introduced to the material by SPD. These techniques concentrate mainly on the investigation of planar (grain boundaries) and line defects (dislocations). On the other hand, point defects, namely vacancies and their agglomerates are investigated in less detail. Positron annihilation spectroscopy (PAS) proved to be an effective method for the investigation of point defects and dislocations in ultra-fine grained (UFG) materials. This study summarizes the results of the investigation of lattice defects in UFG metals with fcc (Al, Ni, Cu), bcc (Fe, Nb, W) and hcp (Mg, Ti) structure prepared by high pressure torsion (HPT). Two techniques of PAS were employed (i) positron lifetime spectroscopy (LT) allowing to characterize the type and concentration ratio of lattice defects in the severely deformed material and (ii) Doppler broadening (DB) of annihilation radiation providing analysis of the homogeneity of the UFG structure and spatial distribution of defects. The latter technique was complemented by mapping of microhardness distribution throughout the surface of the HPT specimens. The LT studies revealed that HPT straining at room temperature introduced not only dislocations but also a high concentration of vacancies. A significant fraction of deformation-induced vacancies disappeared by diffusion to sinks at grain boundaries. Remaining vacancies agglomerated into vacancy clusters. The average size of vacancy clusters differs in various metals and is affected by the activation energy for migration of vacancies in the given material. The analysis of DB of positron annihilation radiation and its correlation with microhardness distribution indicated that dislocation density tends to saturate with strain. On the other hand, the spatial (lateral) distribution of vacancy clusters remains non-uniform even in samples subjected to a high number of HPT revolutions. The average size of vacancy clusters increases with radial distance from the centre of the sample due to the increasing production rate of vacancies.

  • Název v anglickém jazyce

    The Development of Vacancies during Severe Plastic Deformation

  • Popis výsledku anglicky

    A high density of lattice defects is introduced to materials by severe plastic deformation (SPD). Numerous experimental techniques, in particular electron microscopy, X-ray, electron and neutron diffraction, etc. are employed to characterize the evolution of microstructure and defects with strain introduced to the material by SPD. These techniques concentrate mainly on the investigation of planar (grain boundaries) and line defects (dislocations). On the other hand, point defects, namely vacancies and their agglomerates are investigated in less detail. Positron annihilation spectroscopy (PAS) proved to be an effective method for the investigation of point defects and dislocations in ultra-fine grained (UFG) materials. This study summarizes the results of the investigation of lattice defects in UFG metals with fcc (Al, Ni, Cu), bcc (Fe, Nb, W) and hcp (Mg, Ti) structure prepared by high pressure torsion (HPT). Two techniques of PAS were employed (i) positron lifetime spectroscopy (LT) allowing to characterize the type and concentration ratio of lattice defects in the severely deformed material and (ii) Doppler broadening (DB) of annihilation radiation providing analysis of the homogeneity of the UFG structure and spatial distribution of defects. The latter technique was complemented by mapping of microhardness distribution throughout the surface of the HPT specimens. The LT studies revealed that HPT straining at room temperature introduced not only dislocations but also a high concentration of vacancies. A significant fraction of deformation-induced vacancies disappeared by diffusion to sinks at grain boundaries. Remaining vacancies agglomerated into vacancy clusters. The average size of vacancy clusters differs in various metals and is affected by the activation energy for migration of vacancies in the given material. The analysis of DB of positron annihilation radiation and its correlation with microhardness distribution indicated that dislocation density tends to saturate with strain. On the other hand, the spatial (lateral) distribution of vacancy clusters remains non-uniform even in samples subjected to a high number of HPT revolutions. The average size of vacancy clusters increases with radial distance from the centre of the sample due to the increasing production rate of vacancies.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10302 - Condensed matter physics (including formerly solid state physics, supercond.)

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2019

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Materials Transactions

  • ISSN

    1345-9678

  • e-ISSN

  • Svazek periodika

    60

  • Číslo periodika v rámci svazku

    8

  • Stát vydavatele periodika

    JP - Japonsko

  • Počet stran výsledku

    10

  • Strana od-do

    1533-1542

  • Kód UT WoS článku

    000478886400018

  • EID výsledku v databázi Scopus

    2-s2.0-85069658123