Living on the edge of instability
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F19%3A10405369" target="_blank" >RIV/00216208:11320/19:10405369 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=wxr0mJIjeX" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=wxr0mJIjeX</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1088/1742-5468/ab333f" target="_blank" >10.1088/1742-5468/ab333f</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Living on the edge of instability
Popis výsledku v původním jazyce
Statistical description of stochastic dynamics in highly unstable potentials is strongly affected by properties of divergent trajectories, that quickly leave meta-stable regions of the potential landscape and never return. Using ideas from theory of Q-processes and quasi-stationary distributions, we analyze position statistics of non-diverging trajectories. We discuss two limit distributions which can be considered as (formal) generalizations of the Gibbs canonical distribution to highly unstable systems. Even though the associated effective potentials differ only slightly, properties of the two distributions are fundamentally different for all highly unstable system. The distribution for trajectories conditioned to diverge in an infinitely distant future is localized and light-tailed. The other distribution, describing trajectories surviving in the meta-stable region at the instant of conditioning, is heavy-tailed. The exponent of the corresponding power-law tail is determined by the leading divergent term of the unstable potential. We discuss different equivalent forms of the two distributions and derive properties of the effective statistical force arising in the ensemble of non-diverging trajectories after the Doob h-transform. The obtained explicit results generically apply to non-linear dynamical models with meta-stable states and fast kinetic transitions.
Název v anglickém jazyce
Living on the edge of instability
Popis výsledku anglicky
Statistical description of stochastic dynamics in highly unstable potentials is strongly affected by properties of divergent trajectories, that quickly leave meta-stable regions of the potential landscape and never return. Using ideas from theory of Q-processes and quasi-stationary distributions, we analyze position statistics of non-diverging trajectories. We discuss two limit distributions which can be considered as (formal) generalizations of the Gibbs canonical distribution to highly unstable systems. Even though the associated effective potentials differ only slightly, properties of the two distributions are fundamentally different for all highly unstable system. The distribution for trajectories conditioned to diverge in an infinitely distant future is localized and light-tailed. The other distribution, describing trajectories surviving in the meta-stable region at the instant of conditioning, is heavy-tailed. The exponent of the corresponding power-law tail is determined by the leading divergent term of the unstable potential. We discuss different equivalent forms of the two distributions and derive properties of the effective statistical force arising in the ensemble of non-diverging trajectories after the Doob h-transform. The obtained explicit results generically apply to non-linear dynamical models with meta-stable states and fast kinetic transitions.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10300 - Physical sciences
Návaznosti výsledku
Projekt
<a href="/cs/project/GA17-06716S" target="_blank" >GA17-06716S: Stochastická termodynamika molekulárních systémů: od klasické ke kvantové</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Statistical Mechanics: Theory and Experiment
ISSN
1742-5468
e-ISSN
—
Svazek periodika
Neuveden
Číslo periodika v rámci svazku
August 2019
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
18
Strana od-do
084014
Kód UT WoS článku
000482548900003
EID výsledku v databázi Scopus
2-s2.0-85072301090