Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Symmetry axes of Kerr-NUT-(A)dS spacetimes

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F19%3A10408356" target="_blank" >RIV/00216208:11320/19:10408356 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=ZQkUnkZdd6" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=ZQkUnkZdd6</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1103/PhysRevD.100.064014" target="_blank" >10.1103/PhysRevD.100.064014</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Symmetry axes of Kerr-NUT-(A)dS spacetimes

  • Popis výsledku v původním jazyce

    We study fixed points of isometries of the higher-dimensional Kerr-NUT-(A)dS spacetimes that form generalizations of symmetry axes. It turns out that, in the presence of nonzero NUT charges, some parts of the symmetry axes are necessarily singular and their intersections are surrounded by regions with closed timelike curves. Motivated by similarities with the spacetime of a spinning cosmic string, we introduce geometric quantities that characterize various types of singularities on symmetry axes. Expanding the Kerr-NUT-(A)dS spacetimes around candidates for possible fixed points, we find the Killing vectors associated with generalized symmetry axes. By means of these Killing vectors, we calculate the introduced geometric quantities describing axial singularities and show their relation to the parameters of the Kerr-NUT-(A)dS spacetimes. In addition, we identify the Killing coordinates that may be regarded as generalization of the Boyer-Lindquist coordinates.

  • Název v anglickém jazyce

    Symmetry axes of Kerr-NUT-(A)dS spacetimes

  • Popis výsledku anglicky

    We study fixed points of isometries of the higher-dimensional Kerr-NUT-(A)dS spacetimes that form generalizations of symmetry axes. It turns out that, in the presence of nonzero NUT charges, some parts of the symmetry axes are necessarily singular and their intersections are surrounded by regions with closed timelike curves. Motivated by similarities with the spacetime of a spinning cosmic string, we introduce geometric quantities that characterize various types of singularities on symmetry axes. Expanding the Kerr-NUT-(A)dS spacetimes around candidates for possible fixed points, we find the Killing vectors associated with generalized symmetry axes. By means of these Killing vectors, we calculate the introduced geometric quantities describing axial singularities and show their relation to the parameters of the Kerr-NUT-(A)dS spacetimes. In addition, we identify the Killing coordinates that may be regarded as generalization of the Boyer-Lindquist coordinates.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10300 - Physical sciences

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA17-01625S" target="_blank" >GA17-01625S: Prostoročasy a pole v Einsteinově teorii gravitace a jejích zobecněních</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2019

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Physical Review D

  • ISSN

    2470-0010

  • e-ISSN

  • Svazek periodika

    100

  • Číslo periodika v rámci svazku

    6

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    23

  • Strana od-do

    064014

  • Kód UT WoS článku

    000485197900009

  • EID výsledku v databázi Scopus

    2-s2.0-85073007718