Joint Transition-Based Models for Morpho-Syntactic Parsing: Parsing Strategies for MRLs and a Case Study from Modern Hebrew
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F19%3A10427038" target="_blank" >RIV/00216208:11320/19:10427038 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1162/tacl_a_00253" target="_blank" >https://doi.org/10.1162/tacl_a_00253</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Joint Transition-Based Models for Morpho-Syntactic Parsing: Parsing Strategies for MRLs and a Case Study from Modern Hebrew
Popis výsledku v původním jazyce
In standard NLP pipelines, morphological analysis and disambiguation (MA&amp;D) precedes syntactic and semantic downstream tasks. However, for languages with complex and ambiguous word-internal structure, known as morphologically rich languages (MRLs), it has been hypothesized that syntactic context may be crucial for accurate MA&amp;D, and vice versa. In this work we empirically confirm this hypothesis for Modern Hebrew, an MRL with complex morphology and severe word-level ambiguity, in a novel transition-based framework. Specifically, we propose a joint morphosyntactic transition-based framework which formally unifies two distinct transition systems, morphological and syntactic, into a single transition-based system with joint training and joint inference. We empirically show that MA&amp;D results obtained in the joint settings outperform MA&amp;D results obtained by the respective standalone components, and that end-to-end parsing results obtained by our joint system present a new state of the art for Hebrew dependency parsing.
Název v anglickém jazyce
Joint Transition-Based Models for Morpho-Syntactic Parsing: Parsing Strategies for MRLs and a Case Study from Modern Hebrew
Popis výsledku anglicky
In standard NLP pipelines, morphological analysis and disambiguation (MA&amp;D) precedes syntactic and semantic downstream tasks. However, for languages with complex and ambiguous word-internal structure, known as morphologically rich languages (MRLs), it has been hypothesized that syntactic context may be crucial for accurate MA&amp;D, and vice versa. In this work we empirically confirm this hypothesis for Modern Hebrew, an MRL with complex morphology and severe word-level ambiguity, in a novel transition-based framework. Specifically, we propose a joint morphosyntactic transition-based framework which formally unifies two distinct transition systems, morphological and syntactic, into a single transition-based system with joint training and joint inference. We empirically show that MA&amp;D results obtained in the joint settings outperform MA&amp;D results obtained by the respective standalone components, and that end-to-end parsing results obtained by our joint system present a new state of the art for Hebrew dependency parsing.
Klasifikace
Druh
O - Ostatní výsledky
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
—
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů