Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Joint Transition-Based Models for Morpho-Syntactic Parsing: Parsing Strategies for MRLs and a Case Study from Modern Hebrew

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F19%3A10427038" target="_blank" >RIV/00216208:11320/19:10427038 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1162/tacl_a_00253" target="_blank" >https://doi.org/10.1162/tacl_a_00253</a>

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Joint Transition-Based Models for Morpho-Syntactic Parsing: Parsing Strategies for MRLs and a Case Study from Modern Hebrew

  • Popis výsledku v původním jazyce

    In standard NLP pipelines, morphological analysis and disambiguation (MA&amp;amp;D) precedes syntactic and semantic downstream tasks. However, for languages with complex and ambiguous word-internal structure, known as morphologically rich languages (MRLs), it has been hypothesized that syntactic context may be crucial for accurate MA&amp;amp;D, and vice versa. In this work we empirically confirm this hypothesis for Modern Hebrew, an MRL with complex morphology and severe word-level ambiguity, in a novel transition-based framework. Specifically, we propose a joint morphosyntactic transition-based framework which formally unifies two distinct transition systems, morphological and syntactic, into a single transition-based system with joint training and joint inference. We empirically show that MA&amp;amp;D results obtained in the joint settings outperform MA&amp;amp;D results obtained by the respective standalone components, and that end-to-end parsing results obtained by our joint system present a new state of the art for Hebrew dependency parsing.

  • Název v anglickém jazyce

    Joint Transition-Based Models for Morpho-Syntactic Parsing: Parsing Strategies for MRLs and a Case Study from Modern Hebrew

  • Popis výsledku anglicky

    In standard NLP pipelines, morphological analysis and disambiguation (MA&amp;amp;D) precedes syntactic and semantic downstream tasks. However, for languages with complex and ambiguous word-internal structure, known as morphologically rich languages (MRLs), it has been hypothesized that syntactic context may be crucial for accurate MA&amp;amp;D, and vice versa. In this work we empirically confirm this hypothesis for Modern Hebrew, an MRL with complex morphology and severe word-level ambiguity, in a novel transition-based framework. Specifically, we propose a joint morphosyntactic transition-based framework which formally unifies two distinct transition systems, morphological and syntactic, into a single transition-based system with joint training and joint inference. We empirically show that MA&amp;amp;D results obtained in the joint settings outperform MA&amp;amp;D results obtained by the respective standalone components, and that end-to-end parsing results obtained by our joint system present a new state of the art for Hebrew dependency parsing.

Klasifikace

  • Druh

    O - Ostatní výsledky

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

Ostatní

  • Rok uplatnění

    2019

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů