Dependency Parsing as Sequence Labeling with Head-Based Encoding and Multi-Task Learning
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F19%3A10427138" target="_blank" >RIV/00216208:11320/19:10427138 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.aclweb.org/anthology/W19-7716" target="_blank" >https://www.aclweb.org/anthology/W19-7716</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Dependency Parsing as Sequence Labeling with Head-Based Encoding and Multi-Task Learning
Popis výsledku v původním jazyce
Dependency parsing as sequence labeling has recently proved to be a relevant alternative to thetraditional transition- and graph-based approaches. It offers a good trade-off between parsing accuracyand speed. However, recent work on dependency parsing as sequence labeling ignore thepre-processing time of Part-of-Speech tagging – which is required for this task – in the evaluationof speed while other studies showed that Part-of-Speech tags are not essential to achieve state-ofthe-art parsing scores. In this paper, we compare the accuracy and speed of shared and stackedmulti-task learning strategies – as well as a strategy that combines both – to learn Part-of-Speechtagging and dependency parsing in a single sequence labeling pipeline. In addition, we proposean alternative encoding of the dependencies as labels which does not use Part-of-Speech tags andimproves dependency parsing accuracy for most of the languages we evaluate.
Název v anglickém jazyce
Dependency Parsing as Sequence Labeling with Head-Based Encoding and Multi-Task Learning
Popis výsledku anglicky
Dependency parsing as sequence labeling has recently proved to be a relevant alternative to thetraditional transition- and graph-based approaches. It offers a good trade-off between parsing accuracyand speed. However, recent work on dependency parsing as sequence labeling ignore thepre-processing time of Part-of-Speech tagging – which is required for this task – in the evaluationof speed while other studies showed that Part-of-Speech tags are not essential to achieve state-ofthe-art parsing scores. In this paper, we compare the accuracy and speed of shared and stackedmulti-task learning strategies – as well as a strategy that combines both – to learn Part-of-Speechtagging and dependency parsing in a single sequence labeling pipeline. In addition, we proposean alternative encoding of the dependencies as labels which does not use Part-of-Speech tags andimproves dependency parsing accuracy for most of the languages we evaluate.
Klasifikace
Druh
O - Ostatní výsledky
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
—
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů