Table understanding in structured documents
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F19%3A10473073" target="_blank" >RIV/00216208:11320/19:10473073 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1109/ICDARW.2019.40098" target="_blank" >https://doi.org/10.1109/ICDARW.2019.40098</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/ICDARW.2019.40098" target="_blank" >10.1109/ICDARW.2019.40098</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Table understanding in structured documents
Popis výsledku v původním jazyce
Table detection and extraction has been studied in the context of documents like reports, where tables are clearly outlined and stand out from the document structure visually. We study this topic in a rather more challenging domain of layout-heavy business documents, particularly invoices. Invoices present the novel challenges of tables being often without outlines - either in the form of borders or surrounding text flow - with ragged columns and widely varying data content. We will also show, that we can extract specific information from structurally different tables or table-like structures with one model. We present a comprehensive representation of a page using graph over word boxes, positional embeddings, trainable textual features and rephrase the table detection as a text box labeling problem. We will work on our newly presented dataset of pro forma invoices, invoices and debit note documents using this representation and propose multiple baselines to solve this labeling problem. We then propose a novel neural network model that achieves strong, practical results on the presented dataset and analyze the model performance and effects of graph convolutions and self-attention in detail.
Název v anglickém jazyce
Table understanding in structured documents
Popis výsledku anglicky
Table detection and extraction has been studied in the context of documents like reports, where tables are clearly outlined and stand out from the document structure visually. We study this topic in a rather more challenging domain of layout-heavy business documents, particularly invoices. Invoices present the novel challenges of tables being often without outlines - either in the form of borders or surrounding text flow - with ragged columns and widely varying data content. We will also show, that we can extract specific information from structurally different tables or table-like structures with one model. We present a comprehensive representation of a page using graph over word boxes, positional embeddings, trainable textual features and rephrase the table detection as a text box labeling problem. We will work on our newly presented dataset of pro forma invoices, invoices and debit note documents using this representation and propose multiple baselines to solve this labeling problem. We then propose a novel neural network model that achieves strong, practical results on the presented dataset and analyze the model performance and effects of graph convolutions and self-attention in detail.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
2019 INTERNATIONAL CONFERENCE ON DOCUMENT ANALYSIS AND RECOGNITION WORKSHOPS (ICDARW), VOL 5
ISBN
978-1-72815-054-3
ISSN
1520-5363
e-ISSN
—
Počet stran výsledku
7
Strana od-do
158-164
Název nakladatele
IEEE
Místo vydání
NEW YORK
Místo konání akce
Sydney
Datum konání akce
19. 9. 2019
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000518786800027