Heterogeneous Island Models and Their Application to Recommender Systems and Electric Vehicle Charging
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F20%3A10398560" target="_blank" >RIV/00216208:11320/20:10398560 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=j2N23X_KNw" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=j2N23X_KNw</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1142/S0218213020600106" target="_blank" >10.1142/S0218213020600106</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Heterogeneous Island Models and Their Application to Recommender Systems and Electric Vehicle Charging
Popis výsledku v původním jazyce
In this paper we describe a general framework for parallel optimization based on the island model of evolutionary algorithms. The framework runs a number of optimization methods in parallel with periodic communication, in this way, it essentially creates a parallel ensemble of optimization method. At the same time, the system contains a planner that decides which of the available optimization methods should be used to solve the given optimization problem and changes the distribution of such methods during the run of the optimization. Thus, the system effectively solves the problem online parallel portfolio selection. The proposed system is evaluated in a number of common benchmarks with various problem encodings as well as in two real-life problems -- the optimization in recommender systems and the training of neural networks for the control of electric vehicle charging.
Název v anglickém jazyce
Heterogeneous Island Models and Their Application to Recommender Systems and Electric Vehicle Charging
Popis výsledku anglicky
In this paper we describe a general framework for parallel optimization based on the island model of evolutionary algorithms. The framework runs a number of optimization methods in parallel with periodic communication, in this way, it essentially creates a parallel ensemble of optimization method. At the same time, the system contains a planner that decides which of the available optimization methods should be used to solve the given optimization problem and changes the distribution of such methods during the run of the optimization. Thus, the system effectively solves the problem online parallel portfolio selection. The proposed system is evaluated in a number of common benchmarks with various problem encodings as well as in two real-life problems -- the optimization in recommender systems and the training of neural networks for the control of electric vehicle charging.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GJ17-10090Y" target="_blank" >GJ17-10090Y: Optimalizace sítí</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
International Journal on Artificial Intelligence Tools
ISSN
0218-2130
e-ISSN
—
Svazek periodika
29
Číslo periodika v rámci svazku
03n04
Stát vydavatele periodika
SG - Singapurská republika
Počet stran výsledku
20
Strana od-do
1-20
Kód UT WoS článku
000563092500011
EID výsledku v databázi Scopus
2-s2.0-85086878301