Proton Temperature Anisotropy Variations in Inner Heliosphere Estimated with the First Parker Solar Probe Observations
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F20%3A10413959" target="_blank" >RIV/00216208:11320/20:10413959 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=H-v4iJXgy5" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=H-v4iJXgy5</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3847/1538-4365/ab74e0" target="_blank" >10.3847/1538-4365/ab74e0</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Proton Temperature Anisotropy Variations in Inner Heliosphere Estimated with the First Parker Solar Probe Observations
Popis výsledku v původním jazyce
We present a technique for deriving the temperature anisotropy of solar wind protons observed by the Parker Solar Probe (PSP) mission in the near-Sun solar wind. The radial proton temperature measured by the Solar Wind Electrons, Alphas, and Protons (SWEAP) Solar Probe Cup is compared with the orientation of local magnetic field measured by the FIELDS fluxgate magnetometer, and the proton temperatures parallel and perpendicular to the magnetic field are extracted. This procedure is applied to different data products, and the results are compared and optimum timescales for data selection and trends in the uncertainty in the method are identified. We find that the moment-based proton temperature anisotropy is more physically consistent with the expected limits of the mirror and firehose instabilities, possibly because the nonlinear fits do not capture a significant non-Maxwellian shape to the proton velocity distribution function near the Sun. The proton beam has a small effect on total proton temperature anisotropy owing to its much smaller density relative to the core compared to what was seen by previous spacecraft farther from the Sun. Several radial trends in the temperature components and the variation of the anisotropy with parallel plasma beta are presented. Our results suggest that we may see stronger anisotropic heating as PSP moves closer to the Sun, and that a careful treatment of the shape of the proton distribution may be needed to correctly describe the temperature.
Název v anglickém jazyce
Proton Temperature Anisotropy Variations in Inner Heliosphere Estimated with the First Parker Solar Probe Observations
Popis výsledku anglicky
We present a technique for deriving the temperature anisotropy of solar wind protons observed by the Parker Solar Probe (PSP) mission in the near-Sun solar wind. The radial proton temperature measured by the Solar Wind Electrons, Alphas, and Protons (SWEAP) Solar Probe Cup is compared with the orientation of local magnetic field measured by the FIELDS fluxgate magnetometer, and the proton temperatures parallel and perpendicular to the magnetic field are extracted. This procedure is applied to different data products, and the results are compared and optimum timescales for data selection and trends in the uncertainty in the method are identified. We find that the moment-based proton temperature anisotropy is more physically consistent with the expected limits of the mirror and firehose instabilities, possibly because the nonlinear fits do not capture a significant non-Maxwellian shape to the proton velocity distribution function near the Sun. The proton beam has a small effect on total proton temperature anisotropy owing to its much smaller density relative to the core compared to what was seen by previous spacecraft farther from the Sun. Several radial trends in the temperature components and the variation of the anisotropy with parallel plasma beta are presented. Our results suggest that we may see stronger anisotropic heating as PSP moves closer to the Sun, and that a careful treatment of the shape of the proton distribution may be needed to correctly describe the temperature.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10305 - Fluids and plasma physics (including surface physics)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA19-18993S" target="_blank" >GA19-18993S: Přenos energie variací slunečního větru z velkých do malých škál</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Astrophysical Journal, Supplement Series
ISSN
0067-0049
e-ISSN
—
Svazek periodika
246
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
12
Strana od-do
70
Kód UT WoS článku
000520058600001
EID výsledku v databázi Scopus
2-s2.0-85087219590