Tests for validity of the semiparametric heteroskedastic transformation model
Popis výsledku
Identifikátory výsledku
Kód výsledku v IS VaVaI
Výsledek na webu
https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=XPbubQEMSW
DOI - Digital Object Identifier
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Tests for validity of the semiparametric heteroskedastic transformation model
Popis výsledku v původním jazyce
There exist a number of tests for assessing the nonparametric heteroskedastic location scale assumption. The goodness-of-fit tests considered are for the more general hypothesis of the validity of this model under a parametric functional transformation on the response variable, specifically testing for independence between the regressors and the errors in a model where the transformed response is just a location/scale shift of the error is considered. The proposed criteria use the familiar factorization property of the joint characteristic function under independence. The difficulty is that the errors are unobserved and hence one needs to employ properly estimated residuals in their place. The limit distribution of the test statistics is studied under the null hypothesis as well as under alternatives. and also a resampling procedure is suggested in order to approximate the critical values of the tests. This resampling is subsequently employed in a series of Monte Carlo experiments that illustrate the finite-sample properties of the new test. The performance of related test statistics for normality and symmetry of errors is also investigated, and application of our methods on real data sets is provided. (C) 2019 Elsevier B.V. All rights reserved.
Název v anglickém jazyce
Tests for validity of the semiparametric heteroskedastic transformation model
Popis výsledku anglicky
There exist a number of tests for assessing the nonparametric heteroskedastic location scale assumption. The goodness-of-fit tests considered are for the more general hypothesis of the validity of this model under a parametric functional transformation on the response variable, specifically testing for independence between the regressors and the errors in a model where the transformed response is just a location/scale shift of the error is considered. The proposed criteria use the familiar factorization property of the joint characteristic function under independence. The difficulty is that the errors are unobserved and hence one needs to employ properly estimated residuals in their place. The limit distribution of the test statistics is studied under the null hypothesis as well as under alternatives. and also a resampling procedure is suggested in order to approximate the critical values of the tests. This resampling is subsequently employed in a series of Monte Carlo experiments that illustrate the finite-sample properties of the new test. The performance of related test statistics for normality and symmetry of errors is also investigated, and application of our methods on real data sets is provided. (C) 2019 Elsevier B.V. All rights reserved.
Klasifikace
Druh
Jimp - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10103 - Statistics and probability
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Computational Statistics and Data Analysis
ISSN
0167-9473
e-ISSN
—
Svazek periodika
144
Číslo periodika v rámci svazku
Neuveden
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
17
Strana od-do
—
Kód UT WoS článku
000515446200037
EID výsledku v databázi Scopus
2-s2.0-85077238030
Základní informace
Druh výsledku
Jimp - Článek v periodiku v databázi Web of Science
OECD FORD
Statistics and probability
Rok uplatnění
2020