JSON Schema Inference Approaches
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F20%3A10418922" target="_blank" >RIV/00216208:11320/20:10418922 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1007/978-3-030-65847-2_16" target="_blank" >https://doi.org/10.1007/978-3-030-65847-2_16</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-65847-2_16" target="_blank" >10.1007/978-3-030-65847-2_16</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
JSON Schema Inference Approaches
Popis výsledku v původním jazyce
Since the traditional relational database systems are not capable of following the contemporary requirements on Big Data processing, a family of NoSQL databases emerged. It is not an exception for such systems not to require an explicit schema for the data they store. Nevertheless, application developers must maintain at least the so-called implicit schema. In certain situations, however, the presence of an explicit schema is still necessary, and so it makes sense to propose methods capable of schema inference just from the structure of the available data. In the context of document NoSQL databases, namely those assuming the JSON data format, we focus on several representatives of the existing inference approaches and provide their thorough comparison. Although they are often based on similar principles, their features, support for the detection of references, union types, or required and optional properties differ greatly. We believe that without adequately tackling their disadvantages we identified, uniform schema inference and modeling of the multi-model data simply cannot be pursued straightforwardly.
Název v anglickém jazyce
JSON Schema Inference Approaches
Popis výsledku anglicky
Since the traditional relational database systems are not capable of following the contemporary requirements on Big Data processing, a family of NoSQL databases emerged. It is not an exception for such systems not to require an explicit schema for the data they store. Nevertheless, application developers must maintain at least the so-called implicit schema. In certain situations, however, the presence of an explicit schema is still necessary, and so it makes sense to propose methods capable of schema inference just from the structure of the available data. In the context of document NoSQL databases, namely those assuming the JSON data format, we focus on several representatives of the existing inference approaches and provide their thorough comparison. Although they are often based on similar principles, their features, support for the detection of references, union types, or required and optional properties differ greatly. We believe that without adequately tackling their disadvantages we identified, uniform schema inference and modeling of the multi-model data simply cannot be pursued straightforwardly.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA20-22276S" target="_blank" >GA20-22276S: Unifikovaná správa multi-model dat</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Advances in Conceptual Modeling
ISBN
978-3-030-65846-5
ISSN
0302-9743
e-ISSN
—
Počet stran výsledku
11
Strana od-do
173-183
Název nakladatele
Springer International Publishing
Místo vydání
Austria
Místo konání akce
Vienna, Austria
Datum konání akce
3. 11. 2020
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000604160100016