Quantile LASSO with changepoints in panel data models applied to option pricing
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F20%3A10419910" target="_blank" >RIV/00216208:11320/20:10419910 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=rISFtsbFWG" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=rISFtsbFWG</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.ecosta.2019.12.005" target="_blank" >10.1016/j.ecosta.2019.12.005</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Quantile LASSO with changepoints in panel data models applied to option pricing
Popis výsledku v původním jazyce
Panel data are modern statistical tools which are commonly used in all kinds of econometric problems under various regularity assumptions. The panel data models with changepoints are introduced together with the atomic pursuit idea and they are applied to estimate the underlying option price function. Robust estimates and complex insight into the data are both achieved by adopting the quantile LASSO approach. The final model is produced in a fully data-driven manner in just one single modeling step. In addition, the arbitrage-free scenarios are obtained by introducing a set of well defined linear constraints. The final estimate is, under some reasonable assumptions, consistent with respect to the model estimation and the changepoint detection performance. The finite sample properties are investigated in a simulation study and proposed methodology is applied for the Apple call option pricing problem.
Název v anglickém jazyce
Quantile LASSO with changepoints in panel data models applied to option pricing
Popis výsledku anglicky
Panel data are modern statistical tools which are commonly used in all kinds of econometric problems under various regularity assumptions. The panel data models with changepoints are introduced together with the atomic pursuit idea and they are applied to estimate the underlying option price function. Robust estimates and complex insight into the data are both achieved by adopting the quantile LASSO approach. The final model is produced in a fully data-driven manner in just one single modeling step. In addition, the arbitrage-free scenarios are obtained by introducing a set of well defined linear constraints. The final estimate is, under some reasonable assumptions, consistent with respect to the model estimation and the changepoint detection performance. The finite sample properties are investigated in a simulation study and proposed methodology is applied for the Apple call option pricing problem.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10103 - Statistics and probability
Návaznosti výsledku
Projekt
<a href="/cs/project/GJ18-00522Y" target="_blank" >GJ18-00522Y: Pokročilé Ekonometrické Modely pro Oceňování Opcí – AdEMOP</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Econometrics and Statistics [online]
ISSN
2452-3062
e-ISSN
—
Svazek periodika
Neuveden
Číslo periodika v rámci svazku
01
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
10
Strana od-do
1-10
Kód UT WoS článku
000689351000011
EID výsledku v databázi Scopus
2-s2.0-85078186125