Enhancing the mechanical and tribological properties of Mg2Si-rich aluminum alloys by multi-pass friction stir processing
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F20%3A10420088" target="_blank" >RIV/00216208:11320/20:10420088 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=Kyd6z0adFw" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=Kyd6z0adFw</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.matchemphys.2020.123066" target="_blank" >10.1016/j.matchemphys.2020.123066</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Enhancing the mechanical and tribological properties of Mg2Si-rich aluminum alloys by multi-pass friction stir processing
Popis výsledku v původním jazyce
Particle strengthening of in-situ Al-Mg2Si composites hinges on effective geometrical parameters (size, distribution, morphology, and volume fraction) of the inherent primary Mg2Si particles. The use of solid-state friction stir processing (FSP) in a multi-pass mode is recognized as a secondary processing route capable of achieving desirable geometrical parameters of Mg2Si particles in Al-Mg2Si composites as compared to other routes. This paper thus studies the microstructure, mechanical properties, and tribological behavior of the multi-pass FSPed in-situ Al-25Mg(2)Si composite with a threaded triangular pin tool. The FSP was conducted at constant tool rotational and traverse speeds of 1000 rpm and 80 mm/min for 1-6 passes. The results showed a decline in the average Mg2Si size (115-3.25 mu m), porosity content (5.8-0.14%), and primary Mg2Si particle-depleted region as the FSP passes are increased (0-6). Improved geometrical parameters of the primary Mg2Si particles enhance microhardness (178-272 HV), tensile strength (102-233 MPa) and wear resistance of the Al-25%Mg2Si composite via particle dispersion and dislocation strengthening effects, grain refinement, and microstructural densification. Multi-pass FSP can be adopted as a better substitute to element addition, casting modification, heat treatment and electromagnetic stirring in effectively controlling the geometrical parameters of the primary Mg2Si in in-situ Al-Mg2Si composites for improved mechanical and tribological properties.
Název v anglickém jazyce
Enhancing the mechanical and tribological properties of Mg2Si-rich aluminum alloys by multi-pass friction stir processing
Popis výsledku anglicky
Particle strengthening of in-situ Al-Mg2Si composites hinges on effective geometrical parameters (size, distribution, morphology, and volume fraction) of the inherent primary Mg2Si particles. The use of solid-state friction stir processing (FSP) in a multi-pass mode is recognized as a secondary processing route capable of achieving desirable geometrical parameters of Mg2Si particles in Al-Mg2Si composites as compared to other routes. This paper thus studies the microstructure, mechanical properties, and tribological behavior of the multi-pass FSPed in-situ Al-25Mg(2)Si composite with a threaded triangular pin tool. The FSP was conducted at constant tool rotational and traverse speeds of 1000 rpm and 80 mm/min for 1-6 passes. The results showed a decline in the average Mg2Si size (115-3.25 mu m), porosity content (5.8-0.14%), and primary Mg2Si particle-depleted region as the FSP passes are increased (0-6). Improved geometrical parameters of the primary Mg2Si particles enhance microhardness (178-272 HV), tensile strength (102-233 MPa) and wear resistance of the Al-25%Mg2Si composite via particle dispersion and dislocation strengthening effects, grain refinement, and microstructural densification. Multi-pass FSP can be adopted as a better substitute to element addition, casting modification, heat treatment and electromagnetic stirring in effectively controlling the geometrical parameters of the primary Mg2Si in in-situ Al-Mg2Si composites for improved mechanical and tribological properties.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10302 - Condensed matter physics (including formerly solid state physics, supercond.)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Materials Chemistry and Physics
ISSN
0254-0584
e-ISSN
—
Svazek periodika
250
Číslo periodika v rámci svazku
neuveden
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
15
Strana od-do
123066
Kód UT WoS článku
000540353500042
EID výsledku v databázi Scopus
2-s2.0-85083432585