Positive quantum Lyapunov exponents in experimental systems with a regular classical limit
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F20%3A10421688" target="_blank" >RIV/00216208:11320/20:10421688 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=I5wJdHDbNE" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=I5wJdHDbNE</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1103/PhysRevE.101.010202" target="_blank" >10.1103/PhysRevE.101.010202</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Positive quantum Lyapunov exponents in experimental systems with a regular classical limit
Popis výsledku v původním jazyce
Quantum chaos refers to signatures of classical chaos found in the quantum domain. Recently, it has become common to equate the exponential behavior of out-of-time order correlators (OTOCs) with quantum chaos. The quantum-classical correspondence between the OTOC exponential growth and chaos in the classical limit has indeed been corroborated theoretically for some systems and there are several projects to do the same experimentally. The Dicke model, in particular, which has a regular and a chaotic regime, is currently under intense investigation by experiments with trapped ions. We show, however, that for experimentally accessible parameters, OTOCs can grow exponentially also when the Dicke model is in the regular regime. The same holds for the Lipkin-Meshkov-Glick model, which is integrable and also experimentally realizable. The exponential behavior in these cases are due to unstable stationary points, not to chaos.
Název v anglickém jazyce
Positive quantum Lyapunov exponents in experimental systems with a regular classical limit
Popis výsledku anglicky
Quantum chaos refers to signatures of classical chaos found in the quantum domain. Recently, it has become common to equate the exponential behavior of out-of-time order correlators (OTOCs) with quantum chaos. The quantum-classical correspondence between the OTOC exponential growth and chaos in the classical limit has indeed been corroborated theoretically for some systems and there are several projects to do the same experimentally. The Dicke model, in particular, which has a regular and a chaotic regime, is currently under intense investigation by experiments with trapped ions. We show, however, that for experimentally accessible parameters, OTOCs can grow exponentially also when the Dicke model is in the regular regime. The same holds for the Lipkin-Meshkov-Glick model, which is integrable and also experimentally realizable. The exponential behavior in these cases are due to unstable stationary points, not to chaos.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10300 - Physical sciences
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Physical Review E
ISSN
2470-0045
e-ISSN
—
Svazek periodika
101
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
7
Strana od-do
010202
Kód UT WoS článku
000509501100001
EID výsledku v databázi Scopus
2-s2.0-85078824702