Are "Superentropic" black holes superentropic?
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F20%3A10421803" target="_blank" >RIV/00216208:11320/20:10421803 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=~Ojps1qGnt" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=~Ojps1qGnt</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/JHEP02(2020)195" target="_blank" >10.1007/JHEP02(2020)195</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Are "Superentropic" black holes superentropic?
Popis výsledku v původním jazyce
We study a critical limit in which asymptotically-AdS black holes develop maximal conical deficits and their horizons become non-compact. When applied to stationary rotating black holes this limit coincides with the "ultraspinning limit" and yields the Superentropic black holes whose entropy was derived recently and found to exceed the maximal possible bound imposed by the Reverse Isoperimetric Inequality [1, 2]. To gain more insight into this peculiar result, we study this limit in the context of accelerated AdS black holes that have unequal deficits along the polar axes, hence the maximal deficit need not appear on both poles simultaneously. Surprisingly, we find that in the presence of acceleration, the critical limit becomes smooth, and is obtained simply by taking various upper bounds in the parameter space that we elucidate. The Critical black holes thus obtained have many common features with Superentropic black holes, but are manifestly not superentropic. This raises a concern as to whether Superentropic black holes actually are superentropic.(1) We argue that this may not be so and that the original conclusion is likely attributed to the degeneracy of the resulting first law.
Název v anglickém jazyce
Are "Superentropic" black holes superentropic?
Popis výsledku anglicky
We study a critical limit in which asymptotically-AdS black holes develop maximal conical deficits and their horizons become non-compact. When applied to stationary rotating black holes this limit coincides with the "ultraspinning limit" and yields the Superentropic black holes whose entropy was derived recently and found to exceed the maximal possible bound imposed by the Reverse Isoperimetric Inequality [1, 2]. To gain more insight into this peculiar result, we study this limit in the context of accelerated AdS black holes that have unequal deficits along the polar axes, hence the maximal deficit need not appear on both poles simultaneously. Surprisingly, we find that in the presence of acceleration, the critical limit becomes smooth, and is obtained simply by taking various upper bounds in the parameter space that we elucidate. The Critical black holes thus obtained have many common features with Superentropic black holes, but are manifestly not superentropic. This raises a concern as to whether Superentropic black holes actually are superentropic.(1) We argue that this may not be so and that the original conclusion is likely attributed to the degeneracy of the resulting first law.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10300 - Physical sciences
Návaznosti výsledku
Projekt
<a href="/cs/project/GA19-01850S" target="_blank" >GA19-01850S: Černoděrové a zářivé prostoročasy: přesné metody</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of High Energy Physics [online]
ISSN
1029-8479
e-ISSN
—
Svazek periodika
2020
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
24
Strana od-do
195
Kód UT WoS článku
000518622500004
EID výsledku v databázi Scopus
2-s2.0-85081003764