How macroscopic laws describe complex dynamics: Asymptomatic population and Covid-19 spreading
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F20%3A10421850" target="_blank" >RIV/00216208:11320/20:10421850 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=aMml6gyy4r" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=aMml6gyy4r</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1142/S0129183120501120" target="_blank" >10.1142/S0129183120501120</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
How macroscopic laws describe complex dynamics: Asymptomatic population and Covid-19 spreading
Popis výsledku v původním jazyce
Macroscopic growth laws describe in an effective way the underlying complex dynamics of the spreading of infections, as in the case of Covid-19, where the counting of the cumulative number N(t) of detected infected individuals is a generally accepted variable to understand the epidemic phase. However, N(t) does not take into account the unknown number of asymptomatic cases A(t). The considered model of Covid-19 spreading is based on a system of coupled differential equations, which include the dynamics of the spreading among symptomatic and asymptomatic individuals and the strong containment effects due to the social isolation. The solution has been compared with N(t), determined by a single differential equation with no explicit reference to A(t), showing the equivalence of the two methods. The model is applied to Covid-19 spreading in Italy where a transition from an exponential behavior to a Gompertz growth for N(t) has been observed in more recent data. The information contained in the time series N(t) turns out to be reliable to understand the epidemic phase, although it does not describe the total infected population. The asymptomatic population is larger than the symptomatic one in the fast growth phase of the spreading.
Název v anglickém jazyce
How macroscopic laws describe complex dynamics: Asymptomatic population and Covid-19 spreading
Popis výsledku anglicky
Macroscopic growth laws describe in an effective way the underlying complex dynamics of the spreading of infections, as in the case of Covid-19, where the counting of the cumulative number N(t) of detected infected individuals is a generally accepted variable to understand the epidemic phase. However, N(t) does not take into account the unknown number of asymptomatic cases A(t). The considered model of Covid-19 spreading is based on a system of coupled differential equations, which include the dynamics of the spreading among symptomatic and asymptomatic individuals and the strong containment effects due to the social isolation. The solution has been compared with N(t), determined by a single differential equation with no explicit reference to A(t), showing the equivalence of the two methods. The model is applied to Covid-19 spreading in Italy where a transition from an exponential behavior to a Gompertz growth for N(t) has been observed in more recent data. The information contained in the time series N(t) turns out to be reliable to understand the epidemic phase, although it does not describe the total infected population. The asymptomatic population is larger than the symptomatic one in the fast growth phase of the spreading.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10300 - Physical sciences
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
International Journal of Modern Physics C
ISSN
0129-1831
e-ISSN
—
Svazek periodika
31
Číslo periodika v rámci svazku
8
Stát vydavatele periodika
SG - Singapurská republika
Počet stran výsledku
11
Strana od-do
2050112
Kód UT WoS článku
000567816000008
EID výsledku v databázi Scopus
2-s2.0-85091093106