Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Model-Checking on Ordered Structures

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F20%3A10422248" target="_blank" >RIV/00216208:11320/20:10422248 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=8O6Ccyz.qW" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=8O6Ccyz.qW</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1145/3360011" target="_blank" >10.1145/3360011</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Model-Checking on Ordered Structures

  • Popis výsledku v původním jazyce

    We study the model-checking problem for first- and monadic second-order logic on finite relational structures. The problem of verifying whether a formula of these logics is true on a given structure is considered intractable in general, but it does become tractable on interesting classes of structures, such as on classes whose Gaifman graphs have bounded treewidth. In this article, we continue this line of research and study model-checking for first- and monadic second-order logic in the presence of an ordering on the input structure. We do so in two settings: the general ordered case, where the input structures are equipped with a fixed order or successor relation, and the order-invariant case, where the formulas may resort to an ordering, but their truth must be independent of the particular choice of order. In the first setting we show very strong intractability results for most interesting classes of structures. In contrast, in the order-invariant case we obtain tractability results for order-invariant monadic second-order formulas on the same classes of graphs as in the unordered case. For first-order logic, we obtain tractability of successor-invariant formulas on classes whose Gaifman graphs have bounded expansion. Furthermore, we show that model-checking for order-invariant first-order formulas is tractable on coloured posets of bounded width.

  • Název v anglickém jazyce

    Model-Checking on Ordered Structures

  • Popis výsledku anglicky

    We study the model-checking problem for first- and monadic second-order logic on finite relational structures. The problem of verifying whether a formula of these logics is true on a given structure is considered intractable in general, but it does become tractable on interesting classes of structures, such as on classes whose Gaifman graphs have bounded treewidth. In this article, we continue this line of research and study model-checking for first- and monadic second-order logic in the presence of an ordering on the input structure. We do so in two settings: the general ordered case, where the input structures are equipped with a fixed order or successor relation, and the order-invariant case, where the formulas may resort to an ordering, but their truth must be independent of the particular choice of order. In the first setting we show very strong intractability results for most interesting classes of structures. In contrast, in the order-invariant case we obtain tractability results for order-invariant monadic second-order formulas on the same classes of graphs as in the unordered case. For first-order logic, we obtain tractability of successor-invariant formulas on classes whose Gaifman graphs have bounded expansion. Furthermore, we show that model-checking for order-invariant first-order formulas is tractable on coloured posets of bounded width.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2020

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    ACM Transactions on Computational Logic

  • ISSN

    1529-3785

  • e-ISSN

  • Svazek periodika

    21

  • Číslo periodika v rámci svazku

    2

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    28

  • Strana od-do

    11

  • Kód UT WoS článku

    000535132200004

  • EID výsledku v databázi Scopus

    2-s2.0-85082390001