Intersection patterns of planar sets
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F20%3A10422276" target="_blank" >RIV/00216208:11320/20:10422276 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=vQyQAB5B4u" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=vQyQAB5B4u</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00454-020-00205-z" target="_blank" >10.1007/s00454-020-00205-z</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Intersection patterns of planar sets
Popis výsledku v původním jazyce
Let A = {A(1) , ... , A(n)} be a family of sets in the plane. For 0 <= i < n, denote by f(i) the number of subsets sigma of {1, ... , n} of cardinality i + 1 that satisfy boolean AND(i is an element of sigma) A(i) not equal theta. Let k >= 2 be an integer. We prove that if each k-wise and (k+1)-wise intersection of sets from A is empty, or a single point, or both open and path-connected, then f(k+1) = 0 implies f(k) <= cf(k-1) for some positive constant c depending only on k. Similarly, let b >= 2, k > 2b be integers. We prove that if each k-wise or (k+1)-wise intersection of sets from A has at most b path-connected components, which all are open, then f(k+1) = 0 implies f(k) <= cf(k-1) for some positive constant c depending only on b and k. These results also extend to two-dimensional compact surfaces.
Název v anglickém jazyce
Intersection patterns of planar sets
Popis výsledku anglicky
Let A = {A(1) , ... , A(n)} be a family of sets in the plane. For 0 <= i < n, denote by f(i) the number of subsets sigma of {1, ... , n} of cardinality i + 1 that satisfy boolean AND(i is an element of sigma) A(i) not equal theta. Let k >= 2 be an integer. We prove that if each k-wise and (k+1)-wise intersection of sets from A is empty, or a single point, or both open and path-connected, then f(k+1) = 0 implies f(k) <= cf(k-1) for some positive constant c depending only on k. Similarly, let b >= 2, k > 2b be integers. We prove that if each k-wise or (k+1)-wise intersection of sets from A has at most b path-connected components, which all are open, then f(k+1) = 0 implies f(k) <= cf(k-1) for some positive constant c depending only on b and k. These results also extend to two-dimensional compact surfaces.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
O - Projekt operacniho programu
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Discrete and Computational Geometry
ISSN
0179-5376
e-ISSN
—
Svazek periodika
64
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
20
Strana od-do
304-323
Kód UT WoS článku
000537329400001
EID výsledku v databázi Scopus
2-s2.0-85085896962