Expander construction in VNC1
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F20%3A10422307" target="_blank" >RIV/00216208:11320/20:10422307 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=ZXCpymFv9" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=ZXCpymFv9</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.apal.2020.102796" target="_blank" >10.1016/j.apal.2020.102796</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Expander construction in VNC1
Popis výsledku v původním jazyce
We give a combinatorial analysis (using edge expansion) of a variant of the iterative expander construction due to Reingold, Vadhan, and Wigderson [44], and show that this analysis can be formalized in the bounded arithmetic system VNC1 (corresponding to the "NC1 reasoning"). As a corollary, we prove the assumption made by Jerabek [28] that a construction of certain bipartite expander graphs can be formalized in VNC1. This in turn implies that every proof in Gentzen's sequent calculus LK of a monotone sequent can be simulated in the monotone version of LK (MLK) with only polynomial blowup in proof size, strengthening the quasipolynomial simulation result of Atserias, Galesi, and Pudlak [9]. (C) 2020 Elsevier B.V. All rights reserved.
Název v anglickém jazyce
Expander construction in VNC1
Popis výsledku anglicky
We give a combinatorial analysis (using edge expansion) of a variant of the iterative expander construction due to Reingold, Vadhan, and Wigderson [44], and show that this analysis can be formalized in the bounded arithmetic system VNC1 (corresponding to the "NC1 reasoning"). As a corollary, we prove the assumption made by Jerabek [28] that a construction of certain bipartite expander graphs can be formalized in VNC1. This in turn implies that every proof in Gentzen's sequent calculus LK of a monotone sequent can be simulated in the monotone version of LK (MLK) with only polynomial blowup in proof size, strengthening the quasipolynomial simulation result of Atserias, Galesi, and Pudlak [9]. (C) 2020 Elsevier B.V. All rights reserved.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GX19-27871X" target="_blank" >GX19-27871X: Efektivní aproximační algoritmy a obvodová složitost</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Annals of Pure and Applied Logic
ISSN
0168-0072
e-ISSN
—
Svazek periodika
171
Číslo periodika v rámci svazku
7
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
40
Strana od-do
102796
Kód UT WoS článku
000534581100002
EID výsledku v databázi Scopus
2-s2.0-85081217459