Parameterized complexity of fair deletion problems
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F20%3A10422320" target="_blank" >RIV/00216208:11320/20:10422320 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=rMTC1WfaOC" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=rMTC1WfaOC</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.dam.2019.06.001" target="_blank" >10.1016/j.dam.2019.06.001</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Parameterized complexity of fair deletion problems
Popis výsledku v původním jazyce
Edge deletion problems are those where the goal is to find a subset of edges such that after its removal the graph satisfies the given graph property. Typically, we want to minimize the number of elements removed. In fair deletion problems, the objective is changed, so the maximum number of deletions in a neighborhood of a single vertex is minimized. We study the parameterized complexity of fair deletion problems concerning the structural parameters such as the tree-width, the path-width, the tree-depth, the size of minimum feedback vertex set, the neighborhood diversity, and the size of minimum vertex cover of graph G. We prove the W[1]-hardness of the fair FO vertex-deletion problem with respect to the combined size of the tree-depth and the minimum feedback vertex set number. Moreover, we show that there is no algorithm for fair FO vertex-deletion problem running in time n(o)((3)root k), where n is the size of the graph and k is the sum of the mentioned parameters, provided that the Exponential Time Hypothesis holds. On the other hand, we present an FPT algorithm for the fair MSO edge-deletion problem parameterized by the size of minimum vertex cover and an FPT algorithm for the fair MSO vertex-deletion problem parameterized by the neighborhood diversity. (C) 2019 Elsevier B.V. All rights reserved.
Název v anglickém jazyce
Parameterized complexity of fair deletion problems
Popis výsledku anglicky
Edge deletion problems are those where the goal is to find a subset of edges such that after its removal the graph satisfies the given graph property. Typically, we want to minimize the number of elements removed. In fair deletion problems, the objective is changed, so the maximum number of deletions in a neighborhood of a single vertex is minimized. We study the parameterized complexity of fair deletion problems concerning the structural parameters such as the tree-width, the path-width, the tree-depth, the size of minimum feedback vertex set, the neighborhood diversity, and the size of minimum vertex cover of graph G. We prove the W[1]-hardness of the fair FO vertex-deletion problem with respect to the combined size of the tree-depth and the minimum feedback vertex set number. Moreover, we show that there is no algorithm for fair FO vertex-deletion problem running in time n(o)((3)root k), where n is the size of the graph and k is the sum of the mentioned parameters, provided that the Exponential Time Hypothesis holds. On the other hand, we present an FPT algorithm for the fair MSO edge-deletion problem parameterized by the size of minimum vertex cover and an FPT algorithm for the fair MSO vertex-deletion problem parameterized by the neighborhood diversity. (C) 2019 Elsevier B.V. All rights reserved.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GBP202%2F12%2FG061" target="_blank" >GBP202/12/G061: Centrum excelence - Institut teoretické informatiky (CE-ITI)</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Discrete Applied Mathematics
ISSN
0166-218X
e-ISSN
—
Svazek periodika
278
Číslo periodika v rámci svazku
5
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
11
Strana od-do
51-61
Kód UT WoS článku
000528194300005
EID výsledku v databázi Scopus
2-s2.0-85067294396