Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Gibbs free energy based representation formula within the context of implicit constitutive relations for elastic solids

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F20%3A10422397" target="_blank" >RIV/00216208:11320/20:10422397 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=qdioxgI.q2" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=qdioxgI.q2</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.ijnonlinmec.2020.103433" target="_blank" >10.1016/j.ijnonlinmec.2020.103433</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Gibbs free energy based representation formula within the context of implicit constitutive relations for elastic solids

  • Popis výsledku v původním jazyce

    We derive a representation formula for a class of solids described by implicit constitutive relations between the Cauchy stress tensor and the Hencky strain tensor. Using a thermodynamic framework, we show that the Hencky strain tensor can be obtained as the derivative of the specific Gibbs free energy with respect to a stress tensor related to the Cauchy stress tensor. Unlike previous studies that have considered implicit relations between the Cauchy stress tensor and the Hencky strain we work with quantities that allow us to split the deformation into two parts. One part is connected to deformations that change the volume and the other to deformations where volume is preserved. Such a decomposition allows us to clearly characterise the interplay between the corresponding parts of the stress tensor, and to identify additional restrictions regarding the admissible formulae for the Gibbs free energy. We also show that if the constitutive relations of this type are linearised under the small strain assumption, then one can transparently obtain linearised models with density/pressure/stress dependent elastic moduli in a natural manner.

  • Název v anglickém jazyce

    Gibbs free energy based representation formula within the context of implicit constitutive relations for elastic solids

  • Popis výsledku anglicky

    We derive a representation formula for a class of solids described by implicit constitutive relations between the Cauchy stress tensor and the Hencky strain tensor. Using a thermodynamic framework, we show that the Hencky strain tensor can be obtained as the derivative of the specific Gibbs free energy with respect to a stress tensor related to the Cauchy stress tensor. Unlike previous studies that have considered implicit relations between the Cauchy stress tensor and the Hencky strain we work with quantities that allow us to split the deformation into two parts. One part is connected to deformations that change the volume and the other to deformations where volume is preserved. Such a decomposition allows us to clearly characterise the interplay between the corresponding parts of the stress tensor, and to identify additional restrictions regarding the admissible formulae for the Gibbs free energy. We also show that if the constitutive relations of this type are linearised under the small strain assumption, then one can transparently obtain linearised models with density/pressure/stress dependent elastic moduli in a natural manner.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10102 - Applied mathematics

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA18-12719S" target="_blank" >GA18-12719S: Thermodynamická a matematická analýza proudění strukturovaných tekutin</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2020

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    International Journal of Non-Linear Mechanics

  • ISSN

    0020-7462

  • e-ISSN

  • Svazek periodika

    121

  • Číslo periodika v rámci svazku

    May

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    7

  • Strana od-do

    103433

  • Kód UT WoS článku

    000527346800009

  • EID výsledku v databázi Scopus

    2-s2.0-85078851208