Gibbs free energy based representation formula within the context of implicit constitutive relations for elastic solids
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F20%3A10422397" target="_blank" >RIV/00216208:11320/20:10422397 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=qdioxgI.q2" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=qdioxgI.q2</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.ijnonlinmec.2020.103433" target="_blank" >10.1016/j.ijnonlinmec.2020.103433</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Gibbs free energy based representation formula within the context of implicit constitutive relations for elastic solids
Popis výsledku v původním jazyce
We derive a representation formula for a class of solids described by implicit constitutive relations between the Cauchy stress tensor and the Hencky strain tensor. Using a thermodynamic framework, we show that the Hencky strain tensor can be obtained as the derivative of the specific Gibbs free energy with respect to a stress tensor related to the Cauchy stress tensor. Unlike previous studies that have considered implicit relations between the Cauchy stress tensor and the Hencky strain we work with quantities that allow us to split the deformation into two parts. One part is connected to deformations that change the volume and the other to deformations where volume is preserved. Such a decomposition allows us to clearly characterise the interplay between the corresponding parts of the stress tensor, and to identify additional restrictions regarding the admissible formulae for the Gibbs free energy. We also show that if the constitutive relations of this type are linearised under the small strain assumption, then one can transparently obtain linearised models with density/pressure/stress dependent elastic moduli in a natural manner.
Název v anglickém jazyce
Gibbs free energy based representation formula within the context of implicit constitutive relations for elastic solids
Popis výsledku anglicky
We derive a representation formula for a class of solids described by implicit constitutive relations between the Cauchy stress tensor and the Hencky strain tensor. Using a thermodynamic framework, we show that the Hencky strain tensor can be obtained as the derivative of the specific Gibbs free energy with respect to a stress tensor related to the Cauchy stress tensor. Unlike previous studies that have considered implicit relations between the Cauchy stress tensor and the Hencky strain we work with quantities that allow us to split the deformation into two parts. One part is connected to deformations that change the volume and the other to deformations where volume is preserved. Such a decomposition allows us to clearly characterise the interplay between the corresponding parts of the stress tensor, and to identify additional restrictions regarding the admissible formulae for the Gibbs free energy. We also show that if the constitutive relations of this type are linearised under the small strain assumption, then one can transparently obtain linearised models with density/pressure/stress dependent elastic moduli in a natural manner.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GA18-12719S" target="_blank" >GA18-12719S: Thermodynamická a matematická analýza proudění strukturovaných tekutin</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
International Journal of Non-Linear Mechanics
ISSN
0020-7462
e-ISSN
—
Svazek periodika
121
Číslo periodika v rámci svazku
May
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
7
Strana od-do
103433
Kód UT WoS článku
000527346800009
EID výsledku v databázi Scopus
2-s2.0-85078851208