Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Gradient-enhanced thermomechanical 3D model for simulation of transformation patterns in pseudoelastic shape memory alloys

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F20%3A10422560" target="_blank" >RIV/00216208:11320/20:10422560 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=xYj~F3RchY" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=xYj~F3RchY</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.ijplas.2019.08.014" target="_blank" >10.1016/j.ijplas.2019.08.014</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Gradient-enhanced thermomechanical 3D model for simulation of transformation patterns in pseudoelastic shape memory alloys

  • Popis výsledku v původním jazyce

    Stress-induced martensitic transformation in polycrystalline NiTi under tension often proceeds through formation and propagation of macroscopic phase transformation fronts, i.e., diffuse interfaces that separate the transformed and untransformed domains. A gradient-enhanced 3D finite-strain model of pseudoelasticity is developed in this work with the aim to describe the related phenomena. The underlying softening response is regularized by enhancing the Helmholtz free energy of a non-gradient model with a gradient term expressed in terms of the martensite volume fraction. To facilitate finite-element implementation, a micromorphic-type regularization is then introduced following the approach developed recently in the 1D small-strain context. The complete evolution problem is formulated within the incremental energy minimization framework, and the resulting non-smooth minimization problem is solved by employing the augmented Lagrangian technique. In order to account for the thermomechanical coupling effects, a general thermomechanical framework, which is consistent with the second law of thermodynamics and considers all related couplings, is also developed. Finite-element simulations of representative 3D problems show that the model is capable of representing the loading-rate effects in a NiTi dogbone specimen and complex transformation patterns in a NiTi tube under tension. A parametric study is also carried out to investigate the effect of various parameters on the characteristics of the macroscopic transformation front.

  • Název v anglickém jazyce

    Gradient-enhanced thermomechanical 3D model for simulation of transformation patterns in pseudoelastic shape memory alloys

  • Popis výsledku anglicky

    Stress-induced martensitic transformation in polycrystalline NiTi under tension often proceeds through formation and propagation of macroscopic phase transformation fronts, i.e., diffuse interfaces that separate the transformed and untransformed domains. A gradient-enhanced 3D finite-strain model of pseudoelasticity is developed in this work with the aim to describe the related phenomena. The underlying softening response is regularized by enhancing the Helmholtz free energy of a non-gradient model with a gradient term expressed in terms of the martensite volume fraction. To facilitate finite-element implementation, a micromorphic-type regularization is then introduced following the approach developed recently in the 1D small-strain context. The complete evolution problem is formulated within the incremental energy minimization framework, and the resulting non-smooth minimization problem is solved by employing the augmented Lagrangian technique. In order to account for the thermomechanical coupling effects, a general thermomechanical framework, which is consistent with the second law of thermodynamics and considers all related couplings, is also developed. Finite-element simulations of representative 3D problems show that the model is capable of representing the loading-rate effects in a NiTi dogbone specimen and complex transformation patterns in a NiTi tube under tension. A parametric study is also carried out to investigate the effect of various parameters on the characteristics of the macroscopic transformation front.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10102 - Applied mathematics

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA18-12719S" target="_blank" >GA18-12719S: Thermodynamická a matematická analýza proudění strukturovaných tekutin</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2020

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    International Journal of Plasticity

  • ISSN

    0749-6419

  • e-ISSN

  • Svazek periodika

    128

  • Číslo periodika v rámci svazku

    May

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    29

  • Strana od-do

    102589

  • Kód UT WoS článku

    000522635500001

  • EID výsledku v databázi Scopus

    2-s2.0-85081655629