Controlling the domain structure of ferroelectric nanoparticles using tunable shells
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F20%3A10422891" target="_blank" >RIV/00216208:11320/20:10422891 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=blgoIKm5Ey" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=blgoIKm5Ey</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.actamat.2019.11.012" target="_blank" >10.1016/j.actamat.2019.11.012</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Controlling the domain structure of ferroelectric nanoparticles using tunable shells
Popis výsledku v původním jazyce
The possibility of controlling the domain structure in spherical nanoparticles of uniaxial and multiaxial ferroelectrics using a shell with tunable dielectric properties is studied in the framework of Landau-Ginzburg-Devonshire theory. Finite element modeling and analytical calculations are performed for Sn2P2S6 and BaTiO3 nanoparticles covered with polymer, temperature dependent isotropic paraelectric strontium titanate, or anisotropic liquid crystal shells with a strongly temperature dependent dielectric permittivity tensor. It appeared that the "tunable" paraelectric shell with a temperature dependent high dielectric permittivity (similar to 300 - 3000) provides much more efficient screening of the nanoparticle polarization than the polymer shell with a much smaller (similar to 10) temperature-independent permittivity. The tunable dielectric anisotropy of the liquid crystal shell (similar to 1 - 100) adds a new level of functionality for the control of ferroelectric domains morphology (including a single-domain state, domain stripes and cylinders, meandering and labyrinthine domains, and polarization flux-closure domains and vortexes) in comparison with isotropic paraelectric and polymer shells. The obtained results indicate the opportunities to control the domain structure morphology of ferroelectric nanoparticles covered with tunable shells, which can lead to the generation of new ferroelectric memory and advanced cryptographic materials. (C) 2019 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Název v anglickém jazyce
Controlling the domain structure of ferroelectric nanoparticles using tunable shells
Popis výsledku anglicky
The possibility of controlling the domain structure in spherical nanoparticles of uniaxial and multiaxial ferroelectrics using a shell with tunable dielectric properties is studied in the framework of Landau-Ginzburg-Devonshire theory. Finite element modeling and analytical calculations are performed for Sn2P2S6 and BaTiO3 nanoparticles covered with polymer, temperature dependent isotropic paraelectric strontium titanate, or anisotropic liquid crystal shells with a strongly temperature dependent dielectric permittivity tensor. It appeared that the "tunable" paraelectric shell with a temperature dependent high dielectric permittivity (similar to 300 - 3000) provides much more efficient screening of the nanoparticle polarization than the polymer shell with a much smaller (similar to 10) temperature-independent permittivity. The tunable dielectric anisotropy of the liquid crystal shell (similar to 1 - 100) adds a new level of functionality for the control of ferroelectric domains morphology (including a single-domain state, domain stripes and cylinders, meandering and labyrinthine domains, and polarization flux-closure domains and vortexes) in comparison with isotropic paraelectric and polymer shells. The obtained results indicate the opportunities to control the domain structure morphology of ferroelectric nanoparticles covered with tunable shells, which can lead to the generation of new ferroelectric memory and advanced cryptographic materials. (C) 2019 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10302 - Condensed matter physics (including formerly solid state physics, supercond.)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Acta Materialia
ISSN
1359-6454
e-ISSN
—
Svazek periodika
183
Číslo periodika v rámci svazku
Nov
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
15
Strana od-do
36-50
Kód UT WoS článku
000506465100004
EID výsledku v databázi Scopus
2-s2.0-85074895464