Role of nitrogenated carbon in tuning Pt-CeOx based anode catalysts for higher performance of hydrogen-powered fuel cells
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F20%3A10422926" target="_blank" >RIV/00216208:11320/20:10422926 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=in9_iJtlTL" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=in9_iJtlTL</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.apsusc.2020.146054" target="_blank" >10.1016/j.apsusc.2020.146054</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Role of nitrogenated carbon in tuning Pt-CeOx based anode catalysts for higher performance of hydrogen-powered fuel cells
Popis výsledku v původním jazyce
Due to promising catalytic properties of cerium oxide, such based materials have been recognized as a suitable candidate for catalysts at the anode side of fuel cells. In order to achieve the largest active surface area, a commercially available gas diffusion layer used as Pt-CeOx catalyst support has been enhanced by the application of a CNx interlayer. Herein, the surface morphology modification, into the form of individual needles, observed by Scanning Electron Microscopy and Transmission Electron Microscopy, is presented. Furthermore, spectroscopy techniques, namely X-ray Photoelectron Spectroscopy, Electron Energy Loss Spectroscopy, and Energy Dispersive X-ray Spectroscopy reveal important role of nitrogen incorporated in the CNx interlayer that enables formation of very porous surface structures. In addition, it is demonstrated that tuning of catalyst film morphology provides a viable strategy towards higher performance in the PEMFC tests, complemented by better corrosion resistance of CNx interlayers under the start-up conditions of fuel cells.
Název v anglickém jazyce
Role of nitrogenated carbon in tuning Pt-CeOx based anode catalysts for higher performance of hydrogen-powered fuel cells
Popis výsledku anglicky
Due to promising catalytic properties of cerium oxide, such based materials have been recognized as a suitable candidate for catalysts at the anode side of fuel cells. In order to achieve the largest active surface area, a commercially available gas diffusion layer used as Pt-CeOx catalyst support has been enhanced by the application of a CNx interlayer. Herein, the surface morphology modification, into the form of individual needles, observed by Scanning Electron Microscopy and Transmission Electron Microscopy, is presented. Furthermore, spectroscopy techniques, namely X-ray Photoelectron Spectroscopy, Electron Energy Loss Spectroscopy, and Energy Dispersive X-ray Spectroscopy reveal important role of nitrogen incorporated in the CNx interlayer that enables formation of very porous surface structures. In addition, it is demonstrated that tuning of catalyst film morphology provides a viable strategy towards higher performance in the PEMFC tests, complemented by better corrosion resistance of CNx interlayers under the start-up conditions of fuel cells.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10305 - Fluids and plasma physics (including surface physics)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Applied Surface Science
ISSN
0169-4332
e-ISSN
—
Svazek periodika
515
Číslo periodika v rámci svazku
Mar
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
10
Strana od-do
146054
Kód UT WoS článku
000525637300078
EID výsledku v databázi Scopus
2-s2.0-85081935256