Resolving the adsorption of molecular O-2 on the rutile TiO2(110) surface by noncontact atomic force microscopy
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F20%3A10423214" target="_blank" >RIV/00216208:11320/20:10423214 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216305:26620/20:PU137435
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=h0wPO-ZubY" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=h0wPO-ZubY</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1073/pnas.1922452117" target="_blank" >10.1073/pnas.1922452117</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Resolving the adsorption of molecular O-2 on the rutile TiO2(110) surface by noncontact atomic force microscopy
Popis výsledku v původním jazyce
Interaction of molecular oxygen with semiconducting oxide surfaces plays a key role in many technologies. The topic is difficult to approach both by experiment and in theory, mainly due to multiple stable charge states, adsorption configurations, and reaction channels of adsorbed oxygen species. Here we use a combination of noncontact atomic force microscopy (AFM) and density functional theory (DFT) to resolve O-2 adsorption on the rutile TiO2 (110) surface, which presents a longstanding challenge in the surface chemistry of metal oxides. We show that chemically inert AFM tips terminated by an oxygen adatom provide excellent resolution of both the adsorbed species and the oxygen sublattice of the substrate. Adsorbed O-2 molecules can accept either one or two electron polarons from the surface, forming superoxo or peroxo species. The peroxo state is energetically preferred under any conditions relevant for applications. The possibility of nonintrusive imaging allows us to explain behavior related to electron/hole injection from the tip, interaction with UV light, and the effect of thermal annealing.
Název v anglickém jazyce
Resolving the adsorption of molecular O-2 on the rutile TiO2(110) surface by noncontact atomic force microscopy
Popis výsledku anglicky
Interaction of molecular oxygen with semiconducting oxide surfaces plays a key role in many technologies. The topic is difficult to approach both by experiment and in theory, mainly due to multiple stable charge states, adsorption configurations, and reaction channels of adsorbed oxygen species. Here we use a combination of noncontact atomic force microscopy (AFM) and density functional theory (DFT) to resolve O-2 adsorption on the rutile TiO2 (110) surface, which presents a longstanding challenge in the surface chemistry of metal oxides. We show that chemically inert AFM tips terminated by an oxygen adatom provide excellent resolution of both the adsorbed species and the oxygen sublattice of the substrate. Adsorbed O-2 molecules can accept either one or two electron polarons from the surface, forming superoxo or peroxo species. The peroxo state is energetically preferred under any conditions relevant for applications. The possibility of nonintrusive imaging allows us to explain behavior related to electron/hole injection from the tip, interaction with UV light, and the effect of thermal annealing.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10305 - Fluids and plasma physics (including surface physics)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Proceedings of the National Academy of Sciences of the United States of America
ISSN
0027-8424
e-ISSN
—
Svazek periodika
117
Číslo periodika v rámci svazku
26
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
11
Strana od-do
14827-14837
Kód UT WoS článku
000548160900009
EID výsledku v databázi Scopus
2-s2.0-85087468038