How fast do young star clusters expel their natal gas? Estimating the upper limit of the gas expulsion time-scale
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F20%3A10423269" target="_blank" >RIV/00216208:11320/20:10423269 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=pi-LRO8FqG" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=pi-LRO8FqG</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1093/mnras/staa2560" target="_blank" >10.1093/mnras/staa2560</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
How fast do young star clusters expel their natal gas? Estimating the upper limit of the gas expulsion time-scale
Popis výsledku v původním jazyce
Formation of massive stars within embedded star clusters starts a complex interplay between their feedback, inflowing gas, and stellar dynamics, which often includes close stellar encounters. Hydrodynamical simulations usually resort to substantial simplifications to model embedded clusters. Here, we address the simplification which approximates the whole star cluster by a single sink particle, which completely neglects the internal stellar dynamics. In order to model the internal stellar dynamics, we implement a Hermite predictor-corrector integration scheme to the hydrodynamic code FLASH. As we illustrate by a suite of tests, this integrator significantly outperforms the current leap-frog scheme, and it is able to follow the dynamics of small compact stellar systems without the necessity to soften the gravitational potential. We find that resolving individual massive stars instead of representing the whole cluster by a single energetic source has a profound influence on the gas component: for clusters of mass less than approximate to 3 x 10(3)M(circle dot), it slows gas expulsion by a factor of approximate to 5 to approximate to 1Myr, and it results in substantially more complex gas structures. With increasing cluster mass (up to approximate to 3 x 10(3)M(circle dot)), the gas expulsion time-scale slightly decreases. However, more massive clusters (greater than or similar to 5 x 10(3)M(circle dot)) are unable to clear their natal gas with photoionizing radiation and stellar winds only if they form with a star formation efficiency (SFE) of 1/3. This implies that the more massive clusters are either cleared with another feedback mechanism or they form with an SFE higher than 1/3.
Název v anglickém jazyce
How fast do young star clusters expel their natal gas? Estimating the upper limit of the gas expulsion time-scale
Popis výsledku anglicky
Formation of massive stars within embedded star clusters starts a complex interplay between their feedback, inflowing gas, and stellar dynamics, which often includes close stellar encounters. Hydrodynamical simulations usually resort to substantial simplifications to model embedded clusters. Here, we address the simplification which approximates the whole star cluster by a single sink particle, which completely neglects the internal stellar dynamics. In order to model the internal stellar dynamics, we implement a Hermite predictor-corrector integration scheme to the hydrodynamic code FLASH. As we illustrate by a suite of tests, this integrator significantly outperforms the current leap-frog scheme, and it is able to follow the dynamics of small compact stellar systems without the necessity to soften the gravitational potential. We find that resolving individual massive stars instead of representing the whole cluster by a single energetic source has a profound influence on the gas component: for clusters of mass less than approximate to 3 x 10(3)M(circle dot), it slows gas expulsion by a factor of approximate to 5 to approximate to 1Myr, and it results in substantially more complex gas structures. With increasing cluster mass (up to approximate to 3 x 10(3)M(circle dot)), the gas expulsion time-scale slightly decreases. However, more massive clusters (greater than or similar to 5 x 10(3)M(circle dot)) are unable to clear their natal gas with photoionizing radiation and stellar winds only if they form with a star formation efficiency (SFE) of 1/3. This implies that the more massive clusters are either cleared with another feedback mechanism or they form with an SFE higher than 1/3.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10308 - Astronomy (including astrophysics,space science)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Monthly Notices of the Royal Astronomical Society
ISSN
0035-8711
e-ISSN
—
Svazek periodika
499
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
20
Strana od-do
748-767
Kód UT WoS článku
000587761200055
EID výsledku v databázi Scopus
2-s2.0-85098562734