Design of Effective Catalysts Based on ZnLaZrSi Oxide Systems for Obtaining 1,3-Butadiene from Aqueous Ethanol
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F20%3A10423299" target="_blank" >RIV/00216208:11320/20:10423299 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=Dk.~k1v-tx" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=Dk.~k1v-tx</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1021/acssuschemeng.0c05925" target="_blank" >10.1021/acssuschemeng.0c05925</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Design of Effective Catalysts Based on ZnLaZrSi Oxide Systems for Obtaining 1,3-Butadiene from Aqueous Ethanol
Popis výsledku v původním jazyce
ZnLaZrSi oxide systems prepared with a silica component of the different nature have been studied in 1,3-butadiene production from aqueous ethanol. The following silica materials were used: KSKG, A-175, A-380, SBA-15, MCM-41, MCM-48, MCF, and dealuminated BEA zeolites. The characteristics of the porous structure of the silica support, such as porosity, pore size distribution, and specific and external surface areas, were found not to be critical parameters for achieving a high 1,3-butadiene yield during the EtOH-H2O mixture conversion in the presence of ZnLaZrSi oxide catalysts. On the contrary, the quantity and strength of Lewis acid sites, which in turn differ depending on the choice of silica material, have a significant impact on 1,3-butadiene selectivity and yield. The highest values of the selectivity of 1,3-butadiene formation (up to 68%) and yield as well as stability toward deactivation in the presence of H2O were achieved over ZnLaZr-KSKG, ZnLaZr-SBA-15, and ZnLa-Zr(1)SiBEA (with mononuclear isolated tetrahedral Zr(IV) species). The productivity of ZnLa-Zr(1)SiBEA catalyst accounts for 0.324 g(1,3-BD)center dot g(cat)(-1)center dot h(-1) (T = 648 K, WHSV = 2.88 h(-1), 80 vol % EtOH in water as an EtOH source). The main reason for the decrease in 1,3-butadiene yield in the presence of H2O in the reaction mixture was shown to be a deactivation of acetaldehyde condensation sites on the catalyst surface, while the rate of acetaldehyde formation decreases slightly. According to H-1-C-1(3) CP/MAS NMR spectroscopic results, the use of aqueous ethanol as the feed for the ethanol-to-butadiene process is very advantageous to prevent the carburization of the catalysts.
Název v anglickém jazyce
Design of Effective Catalysts Based on ZnLaZrSi Oxide Systems for Obtaining 1,3-Butadiene from Aqueous Ethanol
Popis výsledku anglicky
ZnLaZrSi oxide systems prepared with a silica component of the different nature have been studied in 1,3-butadiene production from aqueous ethanol. The following silica materials were used: KSKG, A-175, A-380, SBA-15, MCM-41, MCM-48, MCF, and dealuminated BEA zeolites. The characteristics of the porous structure of the silica support, such as porosity, pore size distribution, and specific and external surface areas, were found not to be critical parameters for achieving a high 1,3-butadiene yield during the EtOH-H2O mixture conversion in the presence of ZnLaZrSi oxide catalysts. On the contrary, the quantity and strength of Lewis acid sites, which in turn differ depending on the choice of silica material, have a significant impact on 1,3-butadiene selectivity and yield. The highest values of the selectivity of 1,3-butadiene formation (up to 68%) and yield as well as stability toward deactivation in the presence of H2O were achieved over ZnLaZr-KSKG, ZnLaZr-SBA-15, and ZnLa-Zr(1)SiBEA (with mononuclear isolated tetrahedral Zr(IV) species). The productivity of ZnLa-Zr(1)SiBEA catalyst accounts for 0.324 g(1,3-BD)center dot g(cat)(-1)center dot h(-1) (T = 648 K, WHSV = 2.88 h(-1), 80 vol % EtOH in water as an EtOH source). The main reason for the decrease in 1,3-butadiene yield in the presence of H2O in the reaction mixture was shown to be a deactivation of acetaldehyde condensation sites on the catalyst surface, while the rate of acetaldehyde formation decreases slightly. According to H-1-C-1(3) CP/MAS NMR spectroscopic results, the use of aqueous ethanol as the feed for the ethanol-to-butadiene process is very advantageous to prevent the carburization of the catalysts.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10305 - Fluids and plasma physics (including surface physics)
Návaznosti výsledku
Projekt
<a href="/cs/project/LM2018116" target="_blank" >LM2018116: Laboratoř fyziky povrchů - Optická dráha pro výzkum materiálů</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
ACS Sustainable Chemistry & Engineering
ISSN
2168-0485
e-ISSN
—
Svazek periodika
8
Číslo periodika v rámci svazku
44
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
12
Strana od-do
16600-16611
Kód UT WoS článku
000592226900024
EID výsledku v databázi Scopus
2-s2.0-85095880415