Surface Composition of a Highly Active Pt3Y Alloy Catalyst for Application in Low Temperature Fuel Cells
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F20%3A10423823" target="_blank" >RIV/00216208:11320/20:10423823 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=Hmx6fbIZGp" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=Hmx6fbIZGp</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/fuce.201900186" target="_blank" >10.1002/fuce.201900186</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Surface Composition of a Highly Active Pt3Y Alloy Catalyst for Application in Low Temperature Fuel Cells
Popis výsledku v původním jazyce
Currently, platinum is the most widely used catalyst for low temperature proton exchange membrane fuel cells (PEMFC). However, the kinetics at the cathode are slow, and the price of platinum is high. To improve oxygen reduction reaction (ORR) kinetics at the cathode, platinum can be alloyed with rare earth elements, such as yttrium. We report that Pt3Y has the potential to be over 2 times more active for the ORR compared with Pt inside a real fuel cell. We present detailed photoemission analysis into the nature of the sputtered catalyst surface, using synchrotron radiation photoelectron spectroscopy (SRPES) to examine if surface adsorbates or impurities are present and can be removed. Pretreatment removes most of the yttrium oxide in the surface leaving behind a Pt overlayer which is only a few monolayers thick. Evidence of a substochiometric oxide peak in the Y 3d core level is presented, this oxide extends into the surface even after Ar(+)sputter cleaning in-situ. This information will aid the development of new highly active nanocatalysts for employment in real fuel cell electrodes.
Název v anglickém jazyce
Surface Composition of a Highly Active Pt3Y Alloy Catalyst for Application in Low Temperature Fuel Cells
Popis výsledku anglicky
Currently, platinum is the most widely used catalyst for low temperature proton exchange membrane fuel cells (PEMFC). However, the kinetics at the cathode are slow, and the price of platinum is high. To improve oxygen reduction reaction (ORR) kinetics at the cathode, platinum can be alloyed with rare earth elements, such as yttrium. We report that Pt3Y has the potential to be over 2 times more active for the ORR compared with Pt inside a real fuel cell. We present detailed photoemission analysis into the nature of the sputtered catalyst surface, using synchrotron radiation photoelectron spectroscopy (SRPES) to examine if surface adsorbates or impurities are present and can be removed. Pretreatment removes most of the yttrium oxide in the surface leaving behind a Pt overlayer which is only a few monolayers thick. Evidence of a substochiometric oxide peak in the Y 3d core level is presented, this oxide extends into the surface even after Ar(+)sputter cleaning in-situ. This information will aid the development of new highly active nanocatalysts for employment in real fuel cell electrodes.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10305 - Fluids and plasma physics (including surface physics)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Fuel Cells
ISSN
1615-6846
e-ISSN
—
Svazek periodika
20
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
7
Strana od-do
413-419
Kód UT WoS článku
000557553900001
EID výsledku v databázi Scopus
2-s2.0-85089197050