Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Grounded Sequence to Sequence Transduction

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F20%3A10424336" target="_blank" >RIV/00216208:11320/20:10424336 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=pDf7olbdq0" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=pDf7olbdq0</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/JSTSP.2020.2998415" target="_blank" >10.1109/JSTSP.2020.2998415</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Grounded Sequence to Sequence Transduction

  • Popis výsledku v původním jazyce

    Speech recognition and machine translation have made major progress over the past decades, providing practical systems to map one language sequence to another. Although multiple modalities such as sound and video are becoming increasingly available, the state-of-the-art systems are inherently unimodal, in the sense that they take a single modality⁠-either speech or text⁠-as input. Evidence from human learning suggests that additional modalities can provide disambiguating signals crucial for many language tasks. Here, we describe the How2 dataset, a large, open-domain collection of videos with transcriptions and their translations. We then show how this single dataset can be used to develop systems for a variety of language tasks and present a number of models meant as starting points. Across tasks, we find that building multi-modal architectures that perform better than their unimodal counterpart remains a challenge. This leaves plenty of room for the exploration of more advanced solutions that fully

  • Název v anglickém jazyce

    Grounded Sequence to Sequence Transduction

  • Popis výsledku anglicky

    Speech recognition and machine translation have made major progress over the past decades, providing practical systems to map one language sequence to another. Although multiple modalities such as sound and video are becoming increasingly available, the state-of-the-art systems are inherently unimodal, in the sense that they take a single modality⁠-either speech or text⁠-as input. Evidence from human learning suggests that additional modalities can provide disambiguating signals crucial for many language tasks. Here, we describe the How2 dataset, a large, open-domain collection of videos with transcriptions and their translations. We then show how this single dataset can be used to develop systems for a variety of language tasks and present a number of models meant as starting points. Across tasks, we find that building multi-modal architectures that perform better than their unimodal counterpart remains a challenge. This leaves plenty of room for the exploration of more advanced solutions that fully

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GX19-26934X" target="_blank" >GX19-26934X: Neuronové reprezentace v multimodálním a mnohojazyčném modelování</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2020

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    IEEE Journal on Selected Topics in Signal Processing

  • ISSN

    1932-4553

  • e-ISSN

  • Svazek periodika

    14

  • Číslo periodika v rámci svazku

    3

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    15

  • Strana od-do

    577-591

  • Kód UT WoS článku

    000543960100010

  • EID výsledku v databázi Scopus

    2-s2.0-85087505272