Eyes on the Parse: Using Gaze Features in Syntactic Parsing
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F20%3A10424429" target="_blank" >RIV/00216208:11320/20:10424429 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.aclweb.org/anthology/2020.lantern-1.1/" target="_blank" >https://www.aclweb.org/anthology/2020.lantern-1.1/</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Eyes on the Parse: Using Gaze Features in Syntactic Parsing
Popis výsledku v původním jazyce
In this paper, we explore the potential benefits of leveraging eye-tracking information for dependency parsing on the English part of the Dundee corpus. To achieve this, we cast dependency parsing as a sequence labelling task and then augment the neural model for sequence labelling with eye-tracking features. We then experiment with a variety of parser setups ranging from lexicalized parsing to a delexicalized parser. Our experiments show that for a lexicalized parser, although the improvements are positive they are not significant whereas our delexicalized parser significantly outperforms the baseline we established. We also analyze the contribution of various eye-tracking features towards the different parser setups and find that eye-tracking features contain information which is complementary in nature, thus implying that augmenting the parser with various gaze features grouped together provides better performance than any individual gaze feature.
Název v anglickém jazyce
Eyes on the Parse: Using Gaze Features in Syntactic Parsing
Popis výsledku anglicky
In this paper, we explore the potential benefits of leveraging eye-tracking information for dependency parsing on the English part of the Dundee corpus. To achieve this, we cast dependency parsing as a sequence labelling task and then augment the neural model for sequence labelling with eye-tracking features. We then experiment with a variety of parser setups ranging from lexicalized parsing to a delexicalized parser. Our experiments show that for a lexicalized parser, although the improvements are positive they are not significant whereas our delexicalized parser significantly outperforms the baseline we established. We also analyze the contribution of various eye-tracking features towards the different parser setups and find that eye-tracking features contain information which is complementary in nature, thus implying that augmenting the parser with various gaze features grouped together provides better performance than any individual gaze feature.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the Second Workshop on Beyond Vision and LANguage: inTEgrating Real-world kNowledge (LANTERN)
ISBN
978-1-952148-51-4
ISSN
—
e-ISSN
—
Počet stran výsledku
16
Strana od-do
1-16
Název nakladatele
Association for Computational Linguistics
Místo vydání
Barcelona, Spain
Místo konání akce
Online
Datum konání akce
13. 12. 2020
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—