SynSemClass Linked Lexicon: Mapping Synonymy between Languages
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F20%3A10424504" target="_blank" >RIV/00216208:11320/20:10424504 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.aclweb.org/anthology/2020.globalex-1.2" target="_blank" >https://www.aclweb.org/anthology/2020.globalex-1.2</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
SynSemClass Linked Lexicon: Mapping Synonymy between Languages
Popis výsledku v původním jazyce
This lexicon stores cross-lingual semantically similar verb senses in synonym classes extracted from a richly annotated parallel corpus, the Prague Czech-English Dependency Treebank. When building the lexicon, we make use of predicate-argument relations (valency) and link them to semantic roles; in addition, each entry is linked to several external lexicons of more or less "semantic" nature, namely FrameNet, WordNet, VerbNet, OntoNotes and PropBank, and Czech VALLEX. The aim is to provide a linguistic resource that can be used to compare semantic roles and their syntactic properties and features across languages within and across synonym groups (classes, or 'synsets'), as well as gold standard data for automatic NLP experiments with such synonyms, such as synonym discovery, feature mapping, etc. However, perhaps the most important goal is to eventually build an event type ontology that can be referenced and used as a human-readable and human-understandable "database" for all types of events, processes
Název v anglickém jazyce
SynSemClass Linked Lexicon: Mapping Synonymy between Languages
Popis výsledku anglicky
This lexicon stores cross-lingual semantically similar verb senses in synonym classes extracted from a richly annotated parallel corpus, the Prague Czech-English Dependency Treebank. When building the lexicon, we make use of predicate-argument relations (valency) and link them to semantic roles; in addition, each entry is linked to several external lexicons of more or less "semantic" nature, namely FrameNet, WordNet, VerbNet, OntoNotes and PropBank, and Czech VALLEX. The aim is to provide a linguistic resource that can be used to compare semantic roles and their syntactic properties and features across languages within and across synonym groups (classes, or 'synsets'), as well as gold standard data for automatic NLP experiments with such synonyms, such as synonym discovery, feature mapping, etc. However, perhaps the most important goal is to eventually build an event type ontology that can be referenced and used as a human-readable and human-understandable "database" for all types of events, processes
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the 2020 Globalex Workshop on Linked Lexicography (LREC 2020)
ISBN
979-10-95546-46-7
ISSN
—
e-ISSN
—
Počet stran výsledku
10
Strana od-do
10-19
Název nakladatele
European Language Resources Association
Místo vydání
Marseille, France
Místo konání akce
Marseille, France
Datum konání akce
12. 5. 2020
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—