Deep Learning of Heuristics for Domain-independent Planning
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F20%3A10424778" target="_blank" >RIV/00216208:11320/20:10424778 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.5220/0008950400790088" target="_blank" >https://doi.org/10.5220/0008950400790088</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.5220/0008950400790088" target="_blank" >10.5220/0008950400790088</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Deep Learning of Heuristics for Domain-independent Planning
Popis výsledku v původním jazyce
Automated planning deals with the problem of finding a sequence of actions leading from a given state to a desired state. The state-of-the-art automated planning techniques exploit informed forward search guided by a heuristic, where the heuristic (under)estimates a distance from a state to a goal state. In this paper, we present a technique to automatically construct an efficient heuristic for a given domain. The proposed approach is based on training a deep neural network using a set of solved planning problems from the domain. We use a novel way of generating features for states which doesn't depend on usage of existing heuristics. The trained network can be used as a heuristic on any problem from the domain of interest without any limitation on the problem size. Our experiments show that the technique is competitive with popular domain-independent heuristic.
Název v anglickém jazyce
Deep Learning of Heuristics for Domain-independent Planning
Popis výsledku anglicky
Automated planning deals with the problem of finding a sequence of actions leading from a given state to a desired state. The state-of-the-art automated planning techniques exploit informed forward search guided by a heuristic, where the heuristic (under)estimates a distance from a state to a goal state. In this paper, we present a technique to automatically construct an efficient heuristic for a given domain. The proposed approach is based on training a deep neural network using a set of solved planning problems from the domain. We use a novel way of generating features for states which doesn't depend on usage of existing heuristics. The trained network can be used as a heuristic on any problem from the domain of interest without any limitation on the problem size. Our experiments show that the technique is competitive with popular domain-independent heuristic.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA18-07252S" target="_blank" >GA18-07252S: MoRePlan: Modelování a reformulace plánovacích problémů</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
ICAART: PROCEEDINGS OF THE 12TH INTERNATIONAL CONFERENCE ON AGENTS AND ARTIFICIAL INTELLIGENCE, VOL 2
ISBN
978-989-758-395-7
ISSN
—
e-ISSN
—
Počet stran výsledku
10
Strana od-do
79-88
Název nakladatele
SCITEPRESS
Místo vydání
SETUBAL
Místo konání akce
Valletta
Datum konání akce
22. 2. 2020
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000570769000007