Electron Small Polaron and Magnetic Interactions Direct Anisotropic Growth of Silicon-Doped Hematite Nanocrystals
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F20%3A10425671" target="_blank" >RIV/00216208:11320/20:10425671 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68378271:_____/20:00538296 RIV/61989592:15310/20:73603901
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=yZX3-uOVYa" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=yZX3-uOVYa</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1021/acs.cgd.0c00496" target="_blank" >10.1021/acs.cgd.0c00496</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Electron Small Polaron and Magnetic Interactions Direct Anisotropic Growth of Silicon-Doped Hematite Nanocrystals
Popis výsledku v původním jazyce
Hematite (alpha-Fe2O3) is a promising and Earth-abundant material for solar fuel production, and Si-doping has been employed as a general strategy to improve its performance. However, an atomistic description that reconciles the modifications that Si-doping induces on the morphology, crystalline lattice, and electronic and magnetic properties of alpha-Fe2O3 has remained elusive. Here we report on the role of electron small polarons in driving the morphological transition from nearly rounded-shaped to nanowire nanocrystals in Si-doped hematite alpha-Fe2O3. Electron small polaron formation is evidenced by the formation of Fe2+ and the increase of FeO6 distortion at increasing Si content. Local analysis via pair distribution function highlights an unreported crossover from small to large polarons, which affects the correlation length of the polaronic distortion from short to average scales. Ferromagnetic double exchange interactions between Fe2+/Fe3+ species are found to be the driving force of the crossover, constraining the chaining of chemical bonds along the [110] crystallographic direction. This promotes the increase in the reticular density of Fe atoms along the hematite basal plane only, which boosts the anisotropic growth of nanocrystals with more extended [110] facets. Our results show that magnetic and electronic interactions drive preferential crystallographic growth in Si-doped alpha-Fe2O3, thus providing new insights for the nanoscale structural design of efficient solar fuel devices.
Název v anglickém jazyce
Electron Small Polaron and Magnetic Interactions Direct Anisotropic Growth of Silicon-Doped Hematite Nanocrystals
Popis výsledku anglicky
Hematite (alpha-Fe2O3) is a promising and Earth-abundant material for solar fuel production, and Si-doping has been employed as a general strategy to improve its performance. However, an atomistic description that reconciles the modifications that Si-doping induces on the morphology, crystalline lattice, and electronic and magnetic properties of alpha-Fe2O3 has remained elusive. Here we report on the role of electron small polarons in driving the morphological transition from nearly rounded-shaped to nanowire nanocrystals in Si-doped hematite alpha-Fe2O3. Electron small polaron formation is evidenced by the formation of Fe2+ and the increase of FeO6 distortion at increasing Si content. Local analysis via pair distribution function highlights an unreported crossover from small to large polarons, which affects the correlation length of the polaronic distortion from short to average scales. Ferromagnetic double exchange interactions between Fe2+/Fe3+ species are found to be the driving force of the crossover, constraining the chaining of chemical bonds along the [110] crystallographic direction. This promotes the increase in the reticular density of Fe atoms along the hematite basal plane only, which boosts the anisotropic growth of nanocrystals with more extended [110] facets. Our results show that magnetic and electronic interactions drive preferential crystallographic growth in Si-doped alpha-Fe2O3, thus providing new insights for the nanoscale structural design of efficient solar fuel devices.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10305 - Fluids and plasma physics (including surface physics)
Návaznosti výsledku
Projekt
—
Návaznosti
—
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Crystal Growth and Design
ISSN
1528-7483
e-ISSN
—
Svazek periodika
20
Číslo periodika v rámci svazku
7
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
12
Strana od-do
4719-4730
Kód UT WoS článku
000546699900054
EID výsledku v databázi Scopus
2-s2.0-85090090786