Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Electron Small Polaron and Magnetic Interactions Direct Anisotropic Growth of Silicon-Doped Hematite Nanocrystals

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F20%3A10425671" target="_blank" >RIV/00216208:11320/20:10425671 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/68378271:_____/20:00538296 RIV/61989592:15310/20:73603901

  • Výsledek na webu

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=yZX3-uOVYa" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=yZX3-uOVYa</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1021/acs.cgd.0c00496" target="_blank" >10.1021/acs.cgd.0c00496</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Electron Small Polaron and Magnetic Interactions Direct Anisotropic Growth of Silicon-Doped Hematite Nanocrystals

  • Popis výsledku v původním jazyce

    Hematite (alpha-Fe2O3) is a promising and Earth-abundant material for solar fuel production, and Si-doping has been employed as a general strategy to improve its performance. However, an atomistic description that reconciles the modifications that Si-doping induces on the morphology, crystalline lattice, and electronic and magnetic properties of alpha-Fe2O3 has remained elusive. Here we report on the role of electron small polarons in driving the morphological transition from nearly rounded-shaped to nanowire nanocrystals in Si-doped hematite alpha-Fe2O3. Electron small polaron formation is evidenced by the formation of Fe2+ and the increase of FeO6 distortion at increasing Si content. Local analysis via pair distribution function highlights an unreported crossover from small to large polarons, which affects the correlation length of the polaronic distortion from short to average scales. Ferromagnetic double exchange interactions between Fe2+/Fe3+ species are found to be the driving force of the crossover, constraining the chaining of chemical bonds along the [110] crystallographic direction. This promotes the increase in the reticular density of Fe atoms along the hematite basal plane only, which boosts the anisotropic growth of nanocrystals with more extended [110] facets. Our results show that magnetic and electronic interactions drive preferential crystallographic growth in Si-doped alpha-Fe2O3, thus providing new insights for the nanoscale structural design of efficient solar fuel devices.

  • Název v anglickém jazyce

    Electron Small Polaron and Magnetic Interactions Direct Anisotropic Growth of Silicon-Doped Hematite Nanocrystals

  • Popis výsledku anglicky

    Hematite (alpha-Fe2O3) is a promising and Earth-abundant material for solar fuel production, and Si-doping has been employed as a general strategy to improve its performance. However, an atomistic description that reconciles the modifications that Si-doping induces on the morphology, crystalline lattice, and electronic and magnetic properties of alpha-Fe2O3 has remained elusive. Here we report on the role of electron small polarons in driving the morphological transition from nearly rounded-shaped to nanowire nanocrystals in Si-doped hematite alpha-Fe2O3. Electron small polaron formation is evidenced by the formation of Fe2+ and the increase of FeO6 distortion at increasing Si content. Local analysis via pair distribution function highlights an unreported crossover from small to large polarons, which affects the correlation length of the polaronic distortion from short to average scales. Ferromagnetic double exchange interactions between Fe2+/Fe3+ species are found to be the driving force of the crossover, constraining the chaining of chemical bonds along the [110] crystallographic direction. This promotes the increase in the reticular density of Fe atoms along the hematite basal plane only, which boosts the anisotropic growth of nanocrystals with more extended [110] facets. Our results show that magnetic and electronic interactions drive preferential crystallographic growth in Si-doped alpha-Fe2O3, thus providing new insights for the nanoscale structural design of efficient solar fuel devices.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10305 - Fluids and plasma physics (including surface physics)

Návaznosti výsledku

  • Projekt

  • Návaznosti

Ostatní

  • Rok uplatnění

    2020

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Crystal Growth and Design

  • ISSN

    1528-7483

  • e-ISSN

  • Svazek periodika

    20

  • Číslo periodika v rámci svazku

    7

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    12

  • Strana od-do

    4719-4730

  • Kód UT WoS článku

    000546699900054

  • EID výsledku v databázi Scopus

    2-s2.0-85090090786