Universals of word order reflect optimization of grammars for efficient communication
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F20%3A10426957" target="_blank" >RIV/00216208:11320/20:10426957 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.pnas.org/content/117/5/2347" target="_blank" >https://www.pnas.org/content/117/5/2347</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Universals of word order reflect optimization of grammars for efficient communication
Popis výsledku v původním jazyce
The universal properties of human languages have been the subject of intense study across the language sciences. We report computational and corpus evidence for the hypothesis that a prominent subset of these universal properties—those related to word order—result from a process of optimization for efficient communication among humans, trading off the need to reduce complexity with the need to reduce ambiguity. We formalize these two pressures with information-theoretic and neural-network models of complexity and ambiguity and simulate grammars with optimized word-order parameters on large-scale data from 51 languages. Evolution of grammars toward efficiency results in word-order patterns that predict a large subset of the major word-order correlations across languages.
Název v anglickém jazyce
Universals of word order reflect optimization of grammars for efficient communication
Popis výsledku anglicky
The universal properties of human languages have been the subject of intense study across the language sciences. We report computational and corpus evidence for the hypothesis that a prominent subset of these universal properties—those related to word order—result from a process of optimization for efficient communication among humans, trading off the need to reduce complexity with the need to reduce ambiguity. We formalize these two pressures with information-theoretic and neural-network models of complexity and ambiguity and simulate grammars with optimized word-order parameters on large-scale data from 51 languages. Evolution of grammars toward efficiency results in word-order patterns that predict a large subset of the major word-order correlations across languages.
Klasifikace
Druh
O - Ostatní výsledky
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
—
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů