Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Turku Enhanced Parser Pipeline: From Raw Text to Enhanced Graphs in the IWPT 2020 Shared Task

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F20%3A10426958" target="_blank" >RIV/00216208:11320/20:10426958 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.aclweb.org/anthology/2020.iwpt-1.17" target="_blank" >https://www.aclweb.org/anthology/2020.iwpt-1.17</a>

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Turku Enhanced Parser Pipeline: From Raw Text to Enhanced Graphs in the IWPT 2020 Shared Task

  • Popis výsledku v původním jazyce

    We present the approach of the TurkuNLP group to the IWPT 2020 shared task on Multilingual Parsing into Enhanced Universal Dependencies. The task involves 28 treebanks in 17 different languages and requires parsers to generate graph structures extending on the basic dependency trees. Our approach combines language-specific BERT models, the UDify parser, neural sequence-to-sequence lemmatization and a graph transformation approach encoding the enhanced structure into a dependency tree. Our submission averaged 84.5% ELAS, ranking first in the shared task. We make all methods and resources developed for this study freely available under open licenses from https://turkunlp.org.

  • Název v anglickém jazyce

    Turku Enhanced Parser Pipeline: From Raw Text to Enhanced Graphs in the IWPT 2020 Shared Task

  • Popis výsledku anglicky

    We present the approach of the TurkuNLP group to the IWPT 2020 shared task on Multilingual Parsing into Enhanced Universal Dependencies. The task involves 28 treebanks in 17 different languages and requires parsers to generate graph structures extending on the basic dependency trees. Our approach combines language-specific BERT models, the UDify parser, neural sequence-to-sequence lemmatization and a graph transformation approach encoding the enhanced structure into a dependency tree. Our submission averaged 84.5% ELAS, ranking first in the shared task. We make all methods and resources developed for this study freely available under open licenses from https://turkunlp.org.

Klasifikace

  • Druh

    O - Ostatní výsledky

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

Ostatní

  • Rok uplatnění

    2020

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů