What's so special about BERT's layers? A closer look at the NLP pipeline in monolingual and multilingual models
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F20%3A10426960" target="_blank" >RIV/00216208:11320/20:10426960 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.aclweb.org/anthology/2020.findings-emnlp.389" target="_blank" >https://www.aclweb.org/anthology/2020.findings-emnlp.389</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
What's so special about BERT's layers? A closer look at the NLP pipeline in monolingual and multilingual models
Popis výsledku v původním jazyce
Peeking into the inner workings of BERT has shown that its layers resemble the classical NLP pipeline, with progressively more complex tasks being concentrated in later layers. To investigate to what extent these results also hold for a language other than English, we probe a Dutch BERT-based model and the multilingual BERT model for Dutch NLP tasks. In addition, through a deeper analysis of part-of-speech tagging, we show that also within a given task, information is spread over different parts of the network and the pipeline might not be as neat as it seems. Each layer has different specialisations, so that it may be more useful to combine information from different layers, instead of selecting a single one based on the best overall performance.
Název v anglickém jazyce
What's so special about BERT's layers? A closer look at the NLP pipeline in monolingual and multilingual models
Popis výsledku anglicky
Peeking into the inner workings of BERT has shown that its layers resemble the classical NLP pipeline, with progressively more complex tasks being concentrated in later layers. To investigate to what extent these results also hold for a language other than English, we probe a Dutch BERT-based model and the multilingual BERT model for Dutch NLP tasks. In addition, through a deeper analysis of part-of-speech tagging, we show that also within a given task, information is spread over different parts of the network and the pipeline might not be as neat as it seems. Each layer has different specialisations, so that it may be more useful to combine information from different layers, instead of selecting a single one based on the best overall performance.
Klasifikace
Druh
O - Ostatní výsledky
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
—
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů