Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Multilingual Dependency Parsing from Universal Dependencies to Sesame Street

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F20%3A10426971" target="_blank" >RIV/00216208:11320/20:10426971 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.springer.com/series/558" target="_blank" >https://www.springer.com/series/558</a>

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Multilingual Dependency Parsing from Universal Dependencies to Sesame Street

  • Popis výsledku v původním jazyce

    Research on dependency parsing has always had a strong multilingual orientation, but the lack of standardized annotations for a long time made it difficult both to meaningfully compare results across languages and to develop truly multilingual systems. The Universal Dependencies project has during the last five years tried to overcome this obstacle by developing cross-linguistically consistent morphosyntactic annotation for many languages. During the same period, dependency parsing (like the rest of NLP) has been transformed by the adoption of continuous vector representations and neural network techniques. In this paper, I will introduce the framework and resources of Universal Dependencies, and discuss advances in dependency parsing enabled by these resources in combination with deep learning techniques, ranging from traditional word and character embeddings to deep contextualized word representations like ELMo and BERT.

  • Název v anglickém jazyce

    Multilingual Dependency Parsing from Universal Dependencies to Sesame Street

  • Popis výsledku anglicky

    Research on dependency parsing has always had a strong multilingual orientation, but the lack of standardized annotations for a long time made it difficult both to meaningfully compare results across languages and to develop truly multilingual systems. The Universal Dependencies project has during the last five years tried to overcome this obstacle by developing cross-linguistically consistent morphosyntactic annotation for many languages. During the same period, dependency parsing (like the rest of NLP) has been transformed by the adoption of continuous vector representations and neural network techniques. In this paper, I will introduce the framework and resources of Universal Dependencies, and discuss advances in dependency parsing enabled by these resources in combination with deep learning techniques, ranging from traditional word and character embeddings to deep contextualized word representations like ELMo and BERT.

Klasifikace

  • Druh

    O - Ostatní výsledky

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

Ostatní

  • Rok uplatnění

    2020

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů