Neural Disambiguation of Lemma and Part of Speech in Morphologically Rich Languages
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F20%3A10427006" target="_blank" >RIV/00216208:11320/20:10427006 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.aclweb.org/anthology/2020.lrec-1.439" target="_blank" >https://www.aclweb.org/anthology/2020.lrec-1.439</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Neural Disambiguation of Lemma and Part of Speech in Morphologically Rich Languages
Popis výsledku v původním jazyce
We consider the problem of disambiguating the lemma and part of speech of ambiguous words in morphologically rich languages. We propose a method for disambiguating ambiguous words in context, using a large un-annotated corpus of text, and a morphological analyser—with no manual disambiguation or data annotation. We assume that the morphological analyser produces multiple analyses for ambiguous words. The idea is to train recurrent neural networks on the output that the morphological analyser produces for unambiguous words. We present performance on POS and lemma disambiguation that reaches or surpasses the state of the art—including supervised models—using no manually annotated data. We evaluate the method on several morphologically rich languages.
Název v anglickém jazyce
Neural Disambiguation of Lemma and Part of Speech in Morphologically Rich Languages
Popis výsledku anglicky
We consider the problem of disambiguating the lemma and part of speech of ambiguous words in morphologically rich languages. We propose a method for disambiguating ambiguous words in context, using a large un-annotated corpus of text, and a morphological analyser—with no manual disambiguation or data annotation. We assume that the morphological analyser produces multiple analyses for ambiguous words. The idea is to train recurrent neural networks on the output that the morphological analyser produces for unambiguous words. We present performance on POS and lemma disambiguation that reaches or surpasses the state of the art—including supervised models—using no manually annotated data. We evaluate the method on several morphologically rich languages.
Klasifikace
Druh
O - Ostatní výsledky
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
—
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů