Ubiquity of particle-vortex interactions in turbulent counterflow of superfluid helium
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10424002" target="_blank" >RIV/00216208:11320/21:10424002 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/49777513:23210/21:43961687
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=zDQPOt0KOI" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=zDQPOt0KOI</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1017/jfm.2020.1017" target="_blank" >10.1017/jfm.2020.1017</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Ubiquity of particle-vortex interactions in turbulent counterflow of superfluid helium
Popis výsledku v původním jazyce
Thermal counterflow of superfluid He is investigated experimentally, by employing the particle tracking velocimetry technique. A flat heater, located at the bottom of a vertical channel of square cross-section, is used to generate this unique type of thermally driven flow. Micronic solid particles, made in situ, probe this quantum flow and their time-dependent positions are collected by a digital camera, in a plane perpendicular to the heat source, away from the channel walls. The experiments are performed at relatively large heating powers, resulting in fluid velocities exceeding , to ensure the existence of sufficiently dense tangles of quantized vortices. Within the investigated parameter range, we observe that the particles intermittently switch between two distinct motion regimes, along their trajectories, that is, a single particle can experience both regimes while travelling upward. The regimes can be loosely associated with fast particles, which are moving away from the heat source along almost straight tracks, and to slow particles, whose erratic upward motion can be said to be significantly influenced by quantized vortices. We propose a separation scheme to study the properties of these regimes and of the corresponding transients between them. We find that particles in both regimes display non-classical, broad distributions of velocity, which indicate the relevance of particle-vortex interactions in both cases. At the same time, we observe that the fast particles move along straighter trajectories than the slow ones, suggesting that the strength of particle-vortex interactions in the two regimes is notably different.
Název v anglickém jazyce
Ubiquity of particle-vortex interactions in turbulent counterflow of superfluid helium
Popis výsledku anglicky
Thermal counterflow of superfluid He is investigated experimentally, by employing the particle tracking velocimetry technique. A flat heater, located at the bottom of a vertical channel of square cross-section, is used to generate this unique type of thermally driven flow. Micronic solid particles, made in situ, probe this quantum flow and their time-dependent positions are collected by a digital camera, in a plane perpendicular to the heat source, away from the channel walls. The experiments are performed at relatively large heating powers, resulting in fluid velocities exceeding , to ensure the existence of sufficiently dense tangles of quantized vortices. Within the investigated parameter range, we observe that the particles intermittently switch between two distinct motion regimes, along their trajectories, that is, a single particle can experience both regimes while travelling upward. The regimes can be loosely associated with fast particles, which are moving away from the heat source along almost straight tracks, and to slow particles, whose erratic upward motion can be said to be significantly influenced by quantized vortices. We propose a separation scheme to study the properties of these regimes and of the corresponding transients between them. We find that particles in both regimes display non-classical, broad distributions of velocity, which indicate the relevance of particle-vortex interactions in both cases. At the same time, we observe that the fast particles move along straighter trajectories than the slow ones, suggesting that the strength of particle-vortex interactions in the two regimes is notably different.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10302 - Condensed matter physics (including formerly solid state physics, supercond.)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA19-00939S" target="_blank" >GA19-00939S: Dynamika velkých vírů v kvantové turbulenci</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Fluid Mechanics
ISSN
0022-1120
e-ISSN
—
Svazek periodika
911
Číslo periodika v rámci svazku
25 March 2021
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
22
Strana od-do
A8
Kód UT WoS článku
000611163300001
EID výsledku v databázi Scopus
2-s2.0-85100016591