True Polar Wander on Dynamic Planets: Approximative Methods Versus Full Solution
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10436819" target="_blank" >RIV/00216208:11320/21:10436819 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=7LOlIxgT0E" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=7LOlIxgT0E</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1029/2021JE006948" target="_blank" >10.1029/2021JE006948</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
True Polar Wander on Dynamic Planets: Approximative Methods Versus Full Solution
Popis výsledku v původním jazyce
Almost three decades ago, the problem of long-term polar wander on a dynamic planet was formulated and simplified within the framework of normal mode theory. The underlying simplifications have been debated ever since, recently in a series of papers by Hu et al. (2017a, , 2017b, , 2019, ), who clarify the role of neglecting short-term relaxation modes of the body. However, the authors still do not solve the governing equations in full, because they make approximations to the Liouville equation (LE). In this paper, I use a time domain approach and, for previously studied test loads, both the planet's relaxation and the LE are solved in full. In order to analyze the existing LE approximations, I compute the energy balance of true polar wander (TPW). For fast rotating bodies such as Earth, the rotation axis becomes aligned with the main inertia axis (omega||MIA) once free oscillations are damped. The omega||MIA assumption is re-derived theoretically-contrary to previous beliefs, I demonstrate that it is not necessarily linked to the quasi-fluid limit of the viscoelastic response to loading and rotation, but that it is an expression of neglecting the Coriolis and Euler forces from the equation of motion. It is thus important to distinguish between simplifying the LE and simplifying the planet's response to forcing. For slow rotators such as Venus, the full LE together with energy analysis indicate that previous estimates of TPW rate need to be revisited. The numerical code LIOUSHELL is released on GitHub.
Název v anglickém jazyce
True Polar Wander on Dynamic Planets: Approximative Methods Versus Full Solution
Popis výsledku anglicky
Almost three decades ago, the problem of long-term polar wander on a dynamic planet was formulated and simplified within the framework of normal mode theory. The underlying simplifications have been debated ever since, recently in a series of papers by Hu et al. (2017a, , 2017b, , 2019, ), who clarify the role of neglecting short-term relaxation modes of the body. However, the authors still do not solve the governing equations in full, because they make approximations to the Liouville equation (LE). In this paper, I use a time domain approach and, for previously studied test loads, both the planet's relaxation and the LE are solved in full. In order to analyze the existing LE approximations, I compute the energy balance of true polar wander (TPW). For fast rotating bodies such as Earth, the rotation axis becomes aligned with the main inertia axis (omega||MIA) once free oscillations are damped. The omega||MIA assumption is re-derived theoretically-contrary to previous beliefs, I demonstrate that it is not necessarily linked to the quasi-fluid limit of the viscoelastic response to loading and rotation, but that it is an expression of neglecting the Coriolis and Euler forces from the equation of motion. It is thus important to distinguish between simplifying the LE and simplifying the planet's response to forcing. For slow rotators such as Venus, the full LE together with energy analysis indicate that previous estimates of TPW rate need to be revisited. The numerical code LIOUSHELL is released on GitHub.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10500 - Earth and related environmental sciences
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Geophysical Research. Planets
ISSN
2169-9097
e-ISSN
—
Svazek periodika
126
Číslo periodika v rámci svazku
12
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
17
Strana od-do
e2021JE006948
Kód UT WoS článku
000735886200005
EID výsledku v databázi Scopus
2-s2.0-85121733045