Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Tight Bounds on the Expected Number of Holes in Random Point Sets

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10436870" target="_blank" >RIV/00216208:11320/21:10436870 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1007/978-3-030-83823-2_64" target="_blank" >https://doi.org/10.1007/978-3-030-83823-2_64</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-030-83823-2_64" target="_blank" >10.1007/978-3-030-83823-2_64</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Tight Bounds on the Expected Number of Holes in Random Point Sets

  • Popis výsledku v původním jazyce

    For integers $d geq 2$ and $k geq d+1$, a emph{$k$-hole} in a set $S$ of points in general position in $mathbb{R}^d$ is a $k$-tuple of points from $S$ in convex position such that the interior of their convex hull does not contain any point from $S$. For a convex body $K subseteq mathbb{R}^d$ of unit $d$-dimensional volume, we study the expected number $EH^K_{d,k}(n)$ of $k$-holes in a set of $n$ points drawn uniformly and independently at random from $K$. We prove an asymptotically tight lower bound on $EH^K_{d,k}(n)$ by showing that, for all fixed integers $d geq 2$ and $kgeq d+1$, the number $EH_{d,k}^K(n)$ is at least $Omega(n^d)$. For some small holes, we even determine the leading constant $lim_{n to infty}n^{-d}EH^K_{d,k}(n)$ exactly. We improve the currently best known lower bound on $lim_{n to infty}n^{-d}EH^K_{d,d+1}(n)$ by Reitzner and Temesvari~(2019) and we show that our new bound is tight for $d leq 3$. In the plane, we show that the constant $lim_{n to infty}n^{-2}EH^K_{2,k}(n)$ is independent of $K$ for every fixed $k geq 3$ and we compute it exactly for $k=4$, improving earlier estimates by Fabila-Monroy, Huemer, and Mitsche~(2015) and by the authors~(2020).

  • Název v anglickém jazyce

    Tight Bounds on the Expected Number of Holes in Random Point Sets

  • Popis výsledku anglicky

    For integers $d geq 2$ and $k geq d+1$, a emph{$k$-hole} in a set $S$ of points in general position in $mathbb{R}^d$ is a $k$-tuple of points from $S$ in convex position such that the interior of their convex hull does not contain any point from $S$. For a convex body $K subseteq mathbb{R}^d$ of unit $d$-dimensional volume, we study the expected number $EH^K_{d,k}(n)$ of $k$-holes in a set of $n$ points drawn uniformly and independently at random from $K$. We prove an asymptotically tight lower bound on $EH^K_{d,k}(n)$ by showing that, for all fixed integers $d geq 2$ and $kgeq d+1$, the number $EH_{d,k}^K(n)$ is at least $Omega(n^d)$. For some small holes, we even determine the leading constant $lim_{n to infty}n^{-d}EH^K_{d,k}(n)$ exactly. We improve the currently best known lower bound on $lim_{n to infty}n^{-d}EH^K_{d,d+1}(n)$ by Reitzner and Temesvari~(2019) and we show that our new bound is tight for $d leq 3$. In the plane, we show that the constant $lim_{n to infty}n^{-2}EH^K_{2,k}(n)$ is independent of $K$ for every fixed $k geq 3$ and we compute it exactly for $k=4$, improving earlier estimates by Fabila-Monroy, Huemer, and Mitsche~(2015) and by the authors~(2020).

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10101 - Pure mathematics

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA18-19158S" target="_blank" >GA18-19158S: Algoritmické, strukturální a složitostní aspekty geometrických a dalších konfigurací</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Extended Abstracts EuroComb 2021

  • ISBN

    978-3-030-83823-2

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    6

  • Strana od-do

    411-416

  • Název nakladatele

    Springer International Publishing

  • Místo vydání

    neuveden

  • Místo konání akce

    Barcelona

  • Datum konání akce

    6. 9. 2021

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku