Phase-field modeling of multivariant martensitic transformation at finite-strain: Computational aspects and large-scale finite-element simulations
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10438134" target="_blank" >RIV/00216208:11320/21:10438134 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=7JjQSVzr08" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=7JjQSVzr08</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.cma.2021.113705" target="_blank" >10.1016/j.cma.2021.113705</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Phase-field modeling of multivariant martensitic transformation at finite-strain: Computational aspects and large-scale finite-element simulations
Popis výsledku v původním jazyce
Large-scale 3D martensitic microstructure evolution problems are studied using a finite-element discretization of a finitestrain phase-field model. The model admits an arbitrary crystallography of transformation and arbitrary elastic anisotropy of the phases, and incorporates Hencky-type elasticity, a penalty-regularized double-obstacle potential, and viscous dissipation. The finite-element discretization of the model is performed in Firedrake and relies on the PETSc solver library. The large systems of linear equations arising are efficiently solved using GMRES and a geometric multigrid preconditioner with a carefully chosen relaxation. The modeling capabilities are illustrated through a 3D simulation of the microstructure evolution in a pseudoelastic CuAlNi single crystal during nano-indentation, with all six orthorhombic martensite variants taken into account. Robustness and a good parallel scaling performance have been demonstrated, with the problem size reaching 150 million degrees of freedom. (C) 2021 Elsevier B.V. All rights reserved.
Název v anglickém jazyce
Phase-field modeling of multivariant martensitic transformation at finite-strain: Computational aspects and large-scale finite-element simulations
Popis výsledku anglicky
Large-scale 3D martensitic microstructure evolution problems are studied using a finite-element discretization of a finitestrain phase-field model. The model admits an arbitrary crystallography of transformation and arbitrary elastic anisotropy of the phases, and incorporates Hencky-type elasticity, a penalty-regularized double-obstacle potential, and viscous dissipation. The finite-element discretization of the model is performed in Firedrake and relies on the PETSc solver library. The large systems of linear equations arising are efficiently solved using GMRES and a geometric multigrid preconditioner with a carefully chosen relaxation. The modeling capabilities are illustrated through a 3D simulation of the microstructure evolution in a pseudoelastic CuAlNi single crystal during nano-indentation, with all six orthorhombic martensite variants taken into account. Robustness and a good parallel scaling performance have been demonstrated, with the problem size reaching 150 million degrees of freedom. (C) 2021 Elsevier B.V. All rights reserved.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GA18-12719S" target="_blank" >GA18-12719S: Thermodynamická a matematická analýza proudění strukturovaných tekutin</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Computer Methods in Applied Mechanics and Engineering
ISSN
0045-7825
e-ISSN
—
Svazek periodika
377
Číslo periodika v rámci svazku
April
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
23
Strana od-do
113705
Kód UT WoS článku
000663356600006
EID výsledku v databázi Scopus
2-s2.0-85100726089