Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

A note on Padé approximants of tensor logarithm with application to Hencky-type hyperelasticity

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10438136" target="_blank" >RIV/00216208:11320/21:10438136 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=NlCzUpIGXq" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=NlCzUpIGXq</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s00466-020-01915-0" target="_blank" >10.1007/s00466-020-01915-0</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    A note on Padé approximants of tensor logarithm with application to Hencky-type hyperelasticity

  • Popis výsledku v původním jazyce

    We show that the logarithmic (Hencky) strain and its derivatives can be approximated, in a straightforward manner and with a high accuracy, using Padé approximants of the tensor (matrix) logarithm. Accuracy and computational efficiency of the Padé approximants are favourably compared to an alternative approximation method employing the truncated Taylor series. As an application, Hencky-type hyperelasticity models are considered, in which the elastic strain energy is expressed in terms of the Hencky strain, and of our particular interest is the anisotropic energy quadratic in the Hencky strain. Finite-element computations are carried out to examine performance of the Padé approximants of tensor logarithm in Hencky-type hyperelasticity problems. A discussion is also provided on computation of the stress tensor conjugate to the Hencky strain in a general anisotropic case.

  • Název v anglickém jazyce

    A note on Padé approximants of tensor logarithm with application to Hencky-type hyperelasticity

  • Popis výsledku anglicky

    We show that the logarithmic (Hencky) strain and its derivatives can be approximated, in a straightforward manner and with a high accuracy, using Padé approximants of the tensor (matrix) logarithm. Accuracy and computational efficiency of the Padé approximants are favourably compared to an alternative approximation method employing the truncated Taylor series. As an application, Hencky-type hyperelasticity models are considered, in which the elastic strain energy is expressed in terms of the Hencky strain, and of our particular interest is the anisotropic energy quadratic in the Hencky strain. Finite-element computations are carried out to examine performance of the Padé approximants of tensor logarithm in Hencky-type hyperelasticity problems. A discussion is also provided on computation of the stress tensor conjugate to the Hencky strain in a general anisotropic case.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10102 - Applied mathematics

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA18-12719S" target="_blank" >GA18-12719S: Thermodynamická a matematická analýza proudění strukturovaných tekutin</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Computational Mechanics

  • ISSN

    0178-7675

  • e-ISSN

  • Svazek periodika

    68

  • Číslo periodika v rámci svazku

    3

  • Stát vydavatele periodika

    DE - Spolková republika Německo

  • Počet stran výsledku

    14

  • Strana od-do

    619-632

  • Kód UT WoS článku

    000566065900001

  • EID výsledku v databázi Scopus

    2-s2.0-85090141964