Automated Online Experiment-Driven Adaptation-Mechanics and Cost Aspects
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10438279" target="_blank" >RIV/00216208:11320/21:10438279 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=DHoE5qH6sk" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=DHoE5qH6sk</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/ACCESS.2021.3071809" target="_blank" >10.1109/ACCESS.2021.3071809</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Automated Online Experiment-Driven Adaptation-Mechanics and Cost Aspects
Popis výsledku v původním jazyce
As modern software-intensive systems become larger, more complex, and more customizable, it is desirable to optimize their functionality by runtime adaptations. However, in most cases it is infeasible to fully model and predict their behavior in advance, which is a classical requirement of runtime self-adaptation. To address this problem, we propose their self-adaptation based on a sequence of online experiments carried out in a production environment. The key idea is to evaluate each experiment by data analysis and determine the next potential experiment via an optimization strategy. The feasibility of the approach is illustrated on a use case devoted to online self-adaptation of traffic navigation where Bayesian optimization, grid search, and local search are employed as the optimization strategies. Furthermore, the cost of the experiments is discussed and three key cost components are examined-time cost, adaptation cost, and endurability cost.
Název v anglickém jazyce
Automated Online Experiment-Driven Adaptation-Mechanics and Cost Aspects
Popis výsledku anglicky
As modern software-intensive systems become larger, more complex, and more customizable, it is desirable to optimize their functionality by runtime adaptations. However, in most cases it is infeasible to fully model and predict their behavior in advance, which is a classical requirement of runtime self-adaptation. To address this problem, we propose their self-adaptation based on a sequence of online experiments carried out in a production environment. The key idea is to evaluate each experiment by data analysis and determine the next potential experiment via an optimization strategy. The feasibility of the approach is illustrated on a use case devoted to online self-adaptation of traffic navigation where Bayesian optimization, grid search, and local search are employed as the optimization strategies. Furthermore, the cost of the experiments is discussed and three key cost components are examined-time cost, adaptation cost, and endurability cost.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/8A18006" target="_blank" >8A18006: Aggregate Farming in the Cloud</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IEEE Access [online]
ISSN
2169-3536
e-ISSN
—
Svazek periodika
9
Číslo periodika v rámci svazku
April 2021
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
9
Strana od-do
58079-58087
Kód UT WoS článku
000641942600001
EID výsledku v databázi Scopus
2-s2.0-85104208910