Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Low thermal conductivity of the superfast rotator (499998) 2011 PT

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10438677" target="_blank" >RIV/00216208:11320/21:10438677 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=o94czJm31p" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=o94czJm31p</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1051/0004-6361/202039628" target="_blank" >10.1051/0004-6361/202039628</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Low thermal conductivity of the superfast rotator (499998) 2011 PT

  • Popis výsledku v původním jazyce

    Context. Asteroids with a diameter of up to a few dozen meters may spin very fast and complete an entire rotation within a few minutes. These small and fast-rotating bodies are thought to be monolithic objects because the gravitational force due to their small size is not strong enough to counteract the strong centripetal force caused by the fast rotation. This argument means that the rubble-pile structure is not feasible for these objects. Additionally, it is not clear whether the fast spin prevents dust and small particles (regolith) from being kept on their surface.Aims. We develop a model for constraining the thermal conductivity of the surface of the small, fast-rotating near-Earth asteroids. This model may suggest whether regolith is likely present on these objects.Methods. Our approach is based on the comparison of the measured Yarkovsky drift and a predicted value using a theoretical model that depends on the orbital, physical and thermal parameters of the object. The necessary parameters are either deduced from statistical distribution derived for near-Earth asteroids population or determined from observations with associated uncertainty. With this information, we performed Monte Carlo simulations and produced a probability density distribution for the thermal conductivity.Results. Applying our model to the superfast rotator asteroid (499998) 2011 PT, we find that the measured Yarkovsky drift can only be achieved when the thermal conductivity K of the surface is low. The resulting probability density function for the conductivity is bimodal, with two most likely values being around 0.0001 and 0.005 W m(-1) K-1. Based on this, we find that the probability that K is lower than 0.1 W m(-1) K-1 is at least 95%. This low thermal conductivity might indicate that the surface of 2011 PT is covered with a thermal insulating layer, composed of a regolith-like material similar to lunar dust.

  • Název v anglickém jazyce

    Low thermal conductivity of the superfast rotator (499998) 2011 PT

  • Popis výsledku anglicky

    Context. Asteroids with a diameter of up to a few dozen meters may spin very fast and complete an entire rotation within a few minutes. These small and fast-rotating bodies are thought to be monolithic objects because the gravitational force due to their small size is not strong enough to counteract the strong centripetal force caused by the fast rotation. This argument means that the rubble-pile structure is not feasible for these objects. Additionally, it is not clear whether the fast spin prevents dust and small particles (regolith) from being kept on their surface.Aims. We develop a model for constraining the thermal conductivity of the surface of the small, fast-rotating near-Earth asteroids. This model may suggest whether regolith is likely present on these objects.Methods. Our approach is based on the comparison of the measured Yarkovsky drift and a predicted value using a theoretical model that depends on the orbital, physical and thermal parameters of the object. The necessary parameters are either deduced from statistical distribution derived for near-Earth asteroids population or determined from observations with associated uncertainty. With this information, we performed Monte Carlo simulations and produced a probability density distribution for the thermal conductivity.Results. Applying our model to the superfast rotator asteroid (499998) 2011 PT, we find that the measured Yarkovsky drift can only be achieved when the thermal conductivity K of the surface is low. The resulting probability density function for the conductivity is bimodal, with two most likely values being around 0.0001 and 0.005 W m(-1) K-1. Based on this, we find that the probability that K is lower than 0.1 W m(-1) K-1 is at least 95%. This low thermal conductivity might indicate that the surface of 2011 PT is covered with a thermal insulating layer, composed of a regolith-like material similar to lunar dust.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10308 - Astronomy (including astrophysics,space science)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA18-06083S" target="_blank" >GA18-06083S: Vývoj pevných těles v protoplanetárních discích a během kolizí</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Astronomy &amp; Astrophysics

  • ISSN

    0004-6361

  • e-ISSN

  • Svazek periodika

    647

  • Číslo periodika v rámci svazku

    březen

  • Stát vydavatele periodika

    FR - Francouzská republika

  • Počet stran výsledku

    12

  • Strana od-do

    A61

  • Kód UT WoS článku

    000627401500003

  • EID výsledku v databázi Scopus

    2-s2.0-85102351047