Exploring the potential of PCA-based quantitation of NMR signals in T-1 relaxometry
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10439416" target="_blank" >RIV/00216208:11320/21:10439416 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=fSh~plcq_a" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=fSh~plcq_a</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jmr.2021.106965" target="_blank" >10.1016/j.jmr.2021.106965</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Exploring the potential of PCA-based quantitation of NMR signals in T-1 relaxometry
Popis výsledku v původním jazyce
Principal component analysis (PCA) has proved to be a powerful technique for processing NMR data. It is particularly useful in signal quantitation where it often provides better results compared to a direct integration of individual signals. In the present work, we recapitulate the principles and theoretical framework underlying PCA-based quantitation with a special focus on T-1 relaxometry. We show that under commonly encountered conditions, this approach can provide up to similar to 4-fold improvement in scatter of points in magnetization build-up curves compared to direct integration. Best practices to optimize the PCA performance in measuring the total magnetization are discussed, including minimization of the number of signal-related principal components and a proper selection of FT parameters and data quantitation intervals. For signals consisting of distinct relaxation components, formulas are provided for resolving the components relaxation and illustrated on a real-data example. In addition to the problem of quantitation, the use of PCA in denoising of partially relaxed spectra is discussed in connection with such applications as line shape analysis and monitoring relaxation of individual spectral components. (C) 2021 Elsevier Inc. All rights reserved.
Název v anglickém jazyce
Exploring the potential of PCA-based quantitation of NMR signals in T-1 relaxometry
Popis výsledku anglicky
Principal component analysis (PCA) has proved to be a powerful technique for processing NMR data. It is particularly useful in signal quantitation where it often provides better results compared to a direct integration of individual signals. In the present work, we recapitulate the principles and theoretical framework underlying PCA-based quantitation with a special focus on T-1 relaxometry. We show that under commonly encountered conditions, this approach can provide up to similar to 4-fold improvement in scatter of points in magnetization build-up curves compared to direct integration. Best practices to optimize the PCA performance in measuring the total magnetization are discussed, including minimization of the number of signal-related principal components and a proper selection of FT parameters and data quantitation intervals. For signals consisting of distinct relaxation components, formulas are provided for resolving the components relaxation and illustrated on a real-data example. In addition to the problem of quantitation, the use of PCA in denoising of partially relaxed spectra is discussed in connection with such applications as line shape analysis and monitoring relaxation of individual spectral components. (C) 2021 Elsevier Inc. All rights reserved.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10301 - Atomic, molecular and chemical physics (physics of atoms and molecules including collision, interaction with radiation, magnetic resonances, Mössbauer effect)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Magnetic Resonance
ISSN
1090-7807
e-ISSN
—
Svazek periodika
326
Číslo periodika v rámci svazku
18 March 2021
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
10
Strana od-do
106965
Kód UT WoS článku
000644070400005
EID výsledku v databázi Scopus
2-s2.0-85103114000