Seismic influence on the VLF transmitter signal intensity measured by the low-altitude satellite DEMETER
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10439536" target="_blank" >RIV/00216208:11320/21:10439536 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=2Qok7c5PaP" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=2Qok7c5PaP</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1140/epjst/e2020-000271-1" target="_blank" >10.1140/epjst/e2020-000271-1</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Seismic influence on the VLF transmitter signal intensity measured by the low-altitude satellite DEMETER
Popis výsledku v původním jazyce
We present results of a statistical study of a possible influence of the seismic activity on the intensity of very low frequency (VLF) transmitter signals observed by a low-altitude satellite. Electric field measurements performed by the Detection of Electro-Magnetic Emissions Transmitted from Earthquake Regions (DEMETER) satellite during its entire mission spanning almost 6.5 years were used. Among various VLF transmitter signals detected, we focused particularly on the NWC and JJI transmitters, because of their favorable locations close to seismically active areas. We evaluate the intensities of the detected transmitter signals at the times when they passed in the vicinity of an imminent earthquake during the propagation in the Earth-ionosphere waveguide, and we statistically compare them with the intensities measured at the times when there was no earthquake present. Only earthquakes with magnitudes larger than or equal to 5 and depths shallower than or equal to 40 km were considered in the analysis. Moreover, due to the low intensity of detected transmitter signals during the day, the analysis is limited exclusively to the nightside. Although the amount of relevant data is rather low, the obtained results show that there is a decrease of the detected intensity shortly (0-3 hours) after the times of the main shocks observed both for the NWC and JJI transmitter signals. The effect is spatially rather limited, observed when the signal passes within about 4 degrees from the earthquake epicenter. The intensity decrease appears to be consistent with acoustic-gravity waves propagating from the earthquake region and influencing the bottom of the ionosphere.
Název v anglickém jazyce
Seismic influence on the VLF transmitter signal intensity measured by the low-altitude satellite DEMETER
Popis výsledku anglicky
We present results of a statistical study of a possible influence of the seismic activity on the intensity of very low frequency (VLF) transmitter signals observed by a low-altitude satellite. Electric field measurements performed by the Detection of Electro-Magnetic Emissions Transmitted from Earthquake Regions (DEMETER) satellite during its entire mission spanning almost 6.5 years were used. Among various VLF transmitter signals detected, we focused particularly on the NWC and JJI transmitters, because of their favorable locations close to seismically active areas. We evaluate the intensities of the detected transmitter signals at the times when they passed in the vicinity of an imminent earthquake during the propagation in the Earth-ionosphere waveguide, and we statistically compare them with the intensities measured at the times when there was no earthquake present. Only earthquakes with magnitudes larger than or equal to 5 and depths shallower than or equal to 40 km were considered in the analysis. Moreover, due to the low intensity of detected transmitter signals during the day, the analysis is limited exclusively to the nightside. Although the amount of relevant data is rather low, the obtained results show that there is a decrease of the detected intensity shortly (0-3 hours) after the times of the main shocks observed both for the NWC and JJI transmitter signals. The effect is spatially rather limited, observed when the signal passes within about 4 degrees from the earthquake epicenter. The intensity decrease appears to be consistent with acoustic-gravity waves propagating from the earthquake region and influencing the bottom of the ionosphere.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10305 - Fluids and plasma physics (including surface physics)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
European Physical Journal: Special Topics
ISSN
1951-6355
e-ISSN
—
Svazek periodika
230
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
FR - Francouzská republika
Počet stran výsledku
19
Strana od-do
227-245
Kód UT WoS článku
000609483400011
EID výsledku v databázi Scopus
2-s2.0-85099565654